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1 Introduction

Semantic modeling is a methodology for expressing information in
such a way that its meaning can be interpreted from the data itself.
The Gellish semantic modeling methodology creates expressions in
a computer interpretable and formalized natural language.
Interpretation of expressions in that language do not require a data
model nor additional (meta) data. The methodology intends to
facilitate interoperability of systems and parties and data exchange
between systems of various parties without the need for data
conversions. It can also facilitate standardization of terminology and
reuse of software.

The Gellish syntax is defined in the ‘Gellish Syntax and contextual
facts’ document whereas the Gellish semantics is defined in the
Gellish taxonomic dictionary files, especially in the Gellish
expressions in the ‘Formal language definition base’ file. Both are
free of charge downloadable from the Gellish website. This book is
an elucidation of that language definition.

Semantic modeling in Gellish English results in collections of
expressions in formalized English. Such collections of expressions
are called semantic networks or semantic models. Such networks
can be about individual things and occurrences and/or about kinds of
things. The latter typically express possibilities or knowledge,
requirements and/or definitions. Semantic modeling can be applied
in  numerous domain disciplines, including manufacturing,
technology, commerce, as well as for modeling human and
organizational relationships.

This book intent to elucidate the definition of the Gellish family of
formalized natural languages, as every natural language in principle
has a Gellish variant: Gellish English, Gellish Dutch, etc.. Each of
those family members is made as close as possible to the respective
natural language, while maintaining being unambiguous and
computer interpretable. The scope of the languages aims to cover in
principle any application area and is not limited to a particular
universe of discourse (UoD). All natural language variants of
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Gellish share the same concepts, whereas those concepts are denoted
in various languages by different terms and phrases. Although each
concept has the same unique identifier (UID) in each language
variant. For example, the concept ‘person’ has a Gellish unique
identifier (990010), independent of the various terms by which that
concept is denoted in the various languages and independent of the
number and kind of ‘attributes’ by which the concept is described.

This book describes the core concepts in the Gellish dictionary-
ontology and the structure of expressions in Gellish. The definitions
of the concepts and their relations as well as the vocabulary of
Formalized English is specified in the electronic Gellish formalized
English Taxonomic Dictionary. Gellish formalized languages are
user extensible. The Communicator reference application software
that demonstrates how Gellish can be applied is available on GitHub
in two versions. A tutorial and wiki guide is available on the
Gellish.net website.

1.1 Semantic versus conventional modeling

Conventional data modeling is based on the conviction that domain
specific data models are necessary for the design and construction of
databases. Such data models define the storage capabilities and
constraints of the databases or data exchange interfaces for a
particular application domain or Universe of Discourse (UoD). It
typically includes defining ‘classes’ or ‘entity types’ and their ‘data
elements’ or ‘attribute types’ and ‘relationship types’ in their
application domain. Entering data in a defined database is basically a
matter of instantiating its data model. However, every developer is
free in defining his ‘classes’ etc. so that the same concept is defined
differently in every data model and as a consequence such databases
are mutually incompatible. Thus as a consequence, data exported
from one database need to be converted before it can be imported in
other databases. Instances of data models are conventionally not
called data models, although they can be regarded as being
information models in their own right.

The Gellish semantic modeling methodology uses a different
approach. It applies the predefined formalized natural language
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Gellish, which includes a syntax as well as an extensive dictionary
for the semantics. The Gellish dictionary contains not only
definitions of concepts and the vocabulary of the language, as in
ordinary dictionaries, but also a taxonomy (a subtype-supertype
hierarchy) and a language defining ontology. This makes that the
Gellish language can be used for expressing knowledge and
requirements as well as for the expression of information about
individual things. Gellish is intended to be universal, just as natural
languages are, thus enabling expressing nearly any knowledge,
requirements, ideas, facts, queries and responses. The language is
the same for many application areas. Gellish is more flexible than
(fixed) data models and has nearly unlimited capabilities for
expressing, storing and exchanging information. Thus for a new
database in another application domain it is needless to define a new
language. It may be required only to enrich the dictionary. This
enables reuse of software and reduces the modeling effort for
database design. Furthermore, the logic constructs that are included
in Gellish enable the application of logic for reasoning and arriving
at logic conclusions. For example by applying inheritance rules via
the built-in taxonomy and transitive relations. When information is
expressed in Gellish, it can be stored directly as a semantic network
in a Gellish enabled database. A Gellish enabled database definition
does not need to be modified when the business requirements grow
or change. Thus semantic databases can serve wide application
areas.

Data model developers typically use tools for the definition of data
models that are based on dedicated data definition languages
(DDL’s). Examples of such languages are XML-Schema,
SQL/DDL, EXPRESS, etc. or their graphical equivalents, such as
UML and IDEFx. The data models act as meta-models (meta-
languages) for their content. This means that conventional data
modeling distinguishes three separate languages:

o The highest level languages are the data modeling languages in
which data models are written.

o The medium level languages are the data models themselves,
because they act as meta-languages for their content. Their
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vocabularies consist of names of entity types and attribute types or
similar things.

o The lowest level is the user language in which the database content
is written. This user language typically consists of terms (data) that
don’t have their own syntax, because the data are stored in the
syntactic structure of the data model (the meta-language).

The first two (meta) languages are formalized languages, as they are
precisely defined. The user language is usually only partly
formalized and does not belong to the domain of the data modelers,
apart from the definitions of ‘allowed values’ lists or ‘pick lists’.
This means that the definition of data requirements and storage
capabilities is done in another language than the actual user
language. However those languages are not independent from each
other, because the content of a database in user language can only be
interpreted correctly by knowing the semantics of the data model
definitions and its syntax.

Furthermore, it should be noted that data models each covers a
limited Universe of Discourse. Thus they fixate and limit the data
storage capabilities of databases by allowing only instantiations of
their entity types/classes. Thus data models in fact are restrictive
(meta) languages without flexibility to store other information than
the scope of the models allow. This may prevent that unwanted data
is entered, but has as disadvantage that costly database conversions
are required when the scope of the system is extended.

The Gellish language does not make such distinctions in
(meta)languages and UoDs. It is flexible and does not fixate nor
limit data storage capabilities of semantic databases. It is a single
formalized language that enables the specification of data
requirements and data storage capabilities as well as enables the
storage of any expression of information, knowledge or requirement
in universal databases and messages. This means that there is no
meta language or data model required for guiding the expression of
information or for the interpretation of expressions.

Semantic modeling is a potential successor of conventional data
modeling, and does more than that, as it also standardizes natural
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language user terminology by introducing the use of a common
dictionary, which enables harmonization of terminology in database
systems and data exchange messages. Gellish formalized languages
are user extensible and enable the definition and use of company
specific terminology and synonymes.

1.2 Terminology
This document uses the following terms:

Topic

Fact
Possibility

Idea

Expression

Intention

Something about which expressions of ideas can be
communicated.

Something that is the case.

Something that might be the case and maybe is the
case. People can communicate about it by
expressing an idea about it with a particular
communicative intention.

Something that is the case, is assumed to be the
case, or is wanted to be the case or that was the case,
either in a real or in an imaginary world. It may be
uttered with a communicative intention, such as a
statement, denial, promise or question, etc. about a
topic.

A formulation of an idea about a topic, including an
intention with which it is formulated and optional
contextual facts about the expression.

A purpose with which an idea is expressed and
communicated, which purpose typically can be
derived from the way in which the idea is expressed
in natural language. For example, the intention to
make a statement, to ask a question, etc.

Elementary idea A basic idea from which atomic ideas can be

composed. There are two basic kinds of elementary
ideas, which are expressed by two kinds of relations.
The first one is a relation between a role and a
relation, which expresses that the relation requires
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Atomic idea

Binary idea

Unary relation

Binary relation

that role, whereas that role shall be played by one of
the related things. The second one is a relation
between a role in a relation and something that plays
that role in the relation, which expresses that the
player plays the role.

A Dbinary idea about a role that is played by
something in a relation. An atomic idea can be
composed of two elementary ideas about the same
role and it can be expressed as a participation
relation between something and a relation, which
expresses that the thing plays a particular role in the
relation.

An idea in which two things play their role.

A relation that expresses one atomic idea. This
means that the relation expresses that one thing
plays a role in the relation. This does not exclude
that other things also play a role in the relation.

A relation that expresses two atomic ideas about the
same relation. This means that the relation expresses
that there are two things that each plays its role in
the relation.

Higher order idea

An idea in which more than two things play their
role.

Higher order relation

A relation that expresses more than two atomic
ideas about the same topic. This means that the
relation expresses that there are more than two
things that each plays its role in the relation.

Variable order relation

A relation in which the number of things that are
involved varies or can vary over time.

14



Unit of communication
An expression of an idea about a topic that
comprises only one relation and its communicative
intention. Such a relation may be composed of
atomic and elementary relations.
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1.3 Nomenclature

This book uses conventions for graphical models as explained
below.

a relation,
classified as a relation between individual things or
classified as a relation between an individual thing and a kind of thing

an individual totality or aspect
g hand for an expression a kind of totality or aspect
a subtype-
@?9— supertype relation
()

kind of role

kind of relation
between kinds of things

Figure 1, Conventions for graphical models
The graphical elements in Figure 1 have a meaning as follows:

1 = A box with rounded corners represents a totality or aspect or a
high level concept and can represent an individual thing as well
as a kind of thing.

1 and 2 = A line in the top left corner of a box indicates that the box
represents an individual thing.

2 and 4 = A rectangular box with an arrow passing behind the box
represents a relation or a kind of relation that is an expression of
an idea.

- A term or phrase in a rectangular box that denotes a kind of
relation requires by definition a particular kind of left hand
object and a right hand object.

- The circle at one end of the arrow indicates the left hand
object in the expression. The arrow point indicates the right
hand object in the expression.
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Note: In this document the unqualified term ‘object’ is used as
synonym for the term ‘anything’. The terms left hand object and right
hand object refer to the things denoted by terms at the left hand and
right hand in formalized language expressions.

A rectangular box with a line in the top left corner indicates that
the relation expresses an idea about an individual thing, being
either a relation between individual things or a relation between
an individual thing and a kind of thing.

Furthermore:

- A shaded rectangular box represents a relation and a
classification relation between that relation and a kind of
relation.

- A term or phrase in a shaded rectangular box is a name of the
kind of relation that classifies the relation.

For example, if the phrase in box 2 would be: ‘is classified as
a’, then the arrow behind relation 2 indicates that 1 is related to
3 by relation 2.

Furthermore, the line in the top left corner indicates that 2 is an
individual relation, whereas the shade indicates that relation 2
is classified as a classification relation (an <is classified as a>
relation).

A box with rounded corners without a line in the top left corner
represents a particular concept (kind of thing).

A rectangular box without a line in the top left corner represents
a relation between concepts.

5 = A hexagonal box in an arrow at the side of the circle represents a

first role (role-1) in a relation that is played by a role player. For
example, the role that is played by object (3) in relation (4).

If the hexagonal box is shaded, then the term in the box denotes
the kind of role that classifies the individual role.

Often the roles are not graphically represented as their type can
be derived from the definition of the kind of relation.

6 = A hexagonal box in an arrow at the side of the arrow point

represents a second role (role-2) that is played by a role player.
For example, the role that is played by object (7) in relation (4).
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7 and 8 = A thick line with a circle at one end is an equivalent of a
specialization relation.
- The circle indicates the subtype (8) and the other connected
box (7) represents the supertype.
- Thus box (8) represents a particular concept (kind of thing)
that is a subtype of (7).
- The inverse means: (7) is the supertype of (8).

18



2 Semantic modeling

Semantics is the study of meaning and its expressions by humans.

Meaning is about any sensible ideas, including definitions,
knowledge, requirements and opinions as well as information about
individual things that are in people’s mind. And such meaning can
be about possible as well as about real and imaginary states of
affairs.

In the natural language semantics discipline it is common practice
that the actual usage of natural languages is taken as basic material
for studying meaning. This makes that the pragmatics of natural
language expressions are the basic subject of the natural language
semantics study. Such a study derives the apparent rules that apply
for the expressions and interpretations from the practice of the
language usage. The study also interprets meaning(s) from the
expressions in various languages.

However, the meanings themselves, the things that are expressed in
natural languages, are language independent, because the same
meaning can be expressed in different ways and in different
languages or even in artificial languages. So, if there is one meaning
then there can be many expressions of that meaning.

2.1 What is Semantic modeling

Semantic modeling use as basic materials (language independent)
meanings and then develops a methodology for expressing those
meanings in the form of a collection of expressions in a formalized
language, whereas those expressions constitute a semantic network
(also called an information model) that is interpretable by software
in computers.

A semantic network of expressions (i.e. a semantic model) is an
information model in which the meaning of data can be
interpreted from the expressions themselves, without the need to
consult a meta-model or external documentation.
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The statement by which a particular meaning is expressed in a
semantic formalized language implies that the expressions should
include everything that is necessary to interpret the meaning from
the expressions. This makes that the language definition is actually a
part of the semantic network. It also means that a semantic network
shall include the expression of context. The formalized language
therefore has to use a formal vocabulary, as well as formal kinds of
expressions (kinds of relations between concepts) and a formal
syntax (a structure of expression components that make up a
sentence). The formality implies that the terms or phrases (the
vocabulary) that are used in writing in that formalized language
denote concepts that are defined in a computer interpretable formal
dictionary. Furthermore, proper definitions of concepts imply that
the concepts in that dictionary are arranged in a subtype-supertype
structure, also called a taxonomy. The reason why that taxonomic
structure is required is explained in chapter 9. And finally the
definition of a formalized language requires the expression of
generally valid knowledge about the valid combinations of concepts
in expressions in the formalized language. Such a formalized
language definition forms a collection of expressions that is called a
language defining ontology. It is called an ‘ontology’ because it is a
knowledge model that uses relations of various kinds to define the
concepts. And it is called ‘language defining’ because the ontology
is limited to expressions that define the formalized language and
thus does not include other categories of knowledge. Thus the
language defining ontology is a distinct basis for a knowledge
representation ontology.

Semantic models in Gellish use natural language terminology, which
makes the expressions and models natural language dependent.
However, Because Gellish uses language independent unique
identifiers (UIDs) to represent the concepts in the expressions, the
models become natural language independent. This is possible,
because semantic models reflect general human information and
knowledge, which is not dependent on its expression in a particular
language. By combining natural language terminology with
language independent UIDs we get the best of both worlds: human
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readability as well as language independent computer
interpretability.

Natural language expressions are not a very suitable means to
unambiguously express information, as natural languages allow for
too much freedom for making expressions, so that unambiguous
interpretation of natural language expressions is not achievable with
the current generation of computers and software. Unambiguous
computer interpretability can be achieved by defining a formalized
language, which is a formalized subset of natural language in which
the ambiguity is eliminated and the degrees of freedom are reduced.

In natural languages, meaning or information is typically expressed
as statements, questions, commands, etc. about topics or ideas.
According to the Gellish Semantic Modeling Methodology,
information is expressed as collections of formalized language
expressions, in such a way that software can interpret the meaning
(semantics) from the expressions, without the need for using a
separate meta-model. The inclusion of the definition of a number of
contextual facts (meta-data or data about the ideas) supports an
unambiguous interpretation. A standard format enables that database
systems can import and export messages that contain expressions
that are structured conform the standard data structure/format.
Therefore, a native universal data structure (syntax), the Gellish
Expression Format is defined, although the language can also be
expressed using equivalent formats such as a particular
implementation of RDF and triple stores or in object oriented
network (graph) databases. The formalized language definition is
itself also expressed in that standard format. This allows that
database systems can be provided with -capabilities for
communicating in the formalized language by loading an initial
vocabulary and taxonomic dictionary-ontology that defines the
formalized language and thus provide the system with a language
definition for expressing and interpreting information for data
storage and exchange with other systems. The common use of a
formalized language also enables that software can interpret the
semantic expressions from multiple databases and it enables that
different databases can interoperate or be treated as if they are one
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distributed database. Interoperation of information about
requirements as well as about deliverables enables verification of
deliverables and management of the consistency possibly in multiple
databases.

This differs from conventional information modeling. In Software
Engineering it is a widespread convention to create semantic meta
models as a basis for database designs and designs for exchanging
messages (usually called interfaces). (A meta model is a model
about an instance model) Such a meta model defines the database
structure or message structure and acts as its documentation.
Typically the meta model remains separate from the database
instances (its content). To interpret the meaning of the data instances
in a database or message the software uses the meaning that is
contained in the semantic meta model. Typically, each database and
message uses its own meta model, thus the data structures of most
conventional databases and messages are different. The different
meta models for different databases are the root cause of the costly
and time consuming process of integrating data from different
databases and developing new interfaces.

Semantic modeling thus means that meaning is included in and can
be inferred from the created semantic models. To enable this, it is
required that not only objects and aspects are defined and
represented in the expressions, but the kinds of the relations between
the things shall also be defined and explicitly be represented in the
expressions. Therefore, semantic models are relation oriented or
expression oriented (although they can be implemented in an object
oriented manner).

2.2 Formalized languages

The above description of semantic modeling illustrates that a
semantic model or semantic network is a collection of expressions in
a computer interpretable formalized language. For the definition of
such a formalized language we need to distinguish between:

o Language definition, comprising the language defining
ontology and the syntax definition.
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o Rules and guidelines for creating valid expressions

o Language usage, comprising the creation of semantic
information models

o Verification of the correctness and consistency of expressions

The language definition requires the definition of at least three
components:

o The Syntax, which consists of
- Unambiguously defined syntactic structures and rules on how
to express what needs to be communicated, which implies the
rules on how to interpret the expressions.

o The Lexicon, which consists of
- Unambiguously defined concepts and individual things and
their denotations by terms and phrases, being the components
from which expressions in syntactic structures can be formed.
This includes also unambiguously defined concepts for
relations (kinds of relations).

o Semantic patterns, which consists of
- A specification of the minimum amount of information and
context that shall be expressed in order to enable unambiguous
interpretation of meaning.

In other words: a language definition consists of a definition of
words and sentences (statements, questions, etc.), their structure and
their context.

There are formal languages that are defined by using artificial
terminology, but Gellish formalized languages are based on natural
language terminology. Artificial terminology is practiced for
example in formal logic notation systems that use for example
formulae and parameters to make expressions. The Gellish
methodology provides a means for making formal expressions using
formalized natural language terminology in universal semantic
patterns. This means that formal expressions are made using
components that are taken from terms and phrases that are also used
and defined in natural languages.
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In summary: Formalization of English defines Formalized English
as a semantic language that can be used for creating computer
interpretable semantic models, being collections of expressions in
Formalized English. Similarly, translated terms and phrases provide
the vocabulary of other formalized languages (Formalized Dutch,
Formalized German, etc.).

2.3 The communication cycle

Communication is an interaction or dialogue between an information
creator and one or more addressees that act as information user or
replier. An information creator typically is a speaker, an author
(writer) or a user of a computer system who enters ‘data’ or creates
drawings, whereas an information user typically is a receiver, hearer,
a reader or a user of a computer system who searches and retrieves
information (data and documents, including drawings) or (re)uses
information in a business process in which additional information is
generated and which is possibly part of a reply. In some cases this
information exchange is a one way traffic, in other cases there is real
communication in the form of a dialogue. Data exchange between
computers is traditionally primarily one way traffic, but is
transforming more and more into dialogues, in which receiving
systems are expected to respond on the content of the messages they
receive. This communication process is illustrated in Figure 2.
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names of individual things
-relationships + names of relationships

Figure 2, Communication cycle

The picture in Figure 2 illustrates that a two way communication or
dialogue between different parties is a continuous sequence of
actions in a ‘Communication cycle’. The cycle always starts in a
‘semantic network’ in a human brain or in software in a computer or
robot with the production of a thought or idea. The idea is first
formulated in (or translated to) a coding system or language (the
encoded information) and then expressed as aspects of a physical
information carrier. This results in an expression or message (as
output) which is transported to a receiving party. That party observes
the information carrier and either copies it to create another
information carrier, or the party interprets the message (as input) and
stores it in its memory (semantic network), whereas the party may
produce another thought, which starts the next cycle.

For example, assume that a person has an idea about something that
is the case in the real world or in an imaginary world, which he
wants to communicate with somebody. In the formulation phase he
uses the rules of some language to formulate his idea, for example in
English. This formulation process will result in information that is
encoded, in this example in English. In the expression phase this
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encoded information guides his speaking mechanism in uttering the
words or it guides his fingers in typing characters on a keyboard.
The expression phase results in a physical carrier of information, for
example in the form of ink on paper or sound waves or modulated
signals, such as radio waves. A similar process takes place at the
interpretation side, where the same definition of the language should
be used. When an idea is not expressed, but internally interpreted
and further processed, then it is called ‘thinking’ or ‘processing’ and
when an expression is reproduces without interpretation, it is called
copying. This information cycle illustrates the importance of the
common use of a formalized language by all communicating parties
for a correct interpretation of the expressions, which is fundamental
for interoperability of systems.

2.4 Formalization of languages

The Gellish formalized language was initially developed by
generalizing limited conventional data models and by addition of
flexibility. After discovering the equivalency between generalized
data models and natural languages with their general applicability
and flexibility the development of a formalized language became
regarded as the formalization of natural languages through
simplifying and reducing the rich expression capabilities of natural
languages. In the following paragraphs we will therefore discuss the
main simplifications of natural language that are applied for the
development of the Gellish family of formalized languages. These
simplifications are:

1. Decomposing meaning into ‘basic semantic units’

2. Separating concepts from terminology

3. Separating intentions from topics

4. Separating timing from time independent expressions
5. Use of singulars and numbers to denote plurals

6. Expressing contexts
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2.4.1 Decomposing meaning into ‘basic semantic units’

There are many ways in which meaning can be expressed. Examples
are not only through sentences of spoken and written words, but also
through technical drawings, 3D models, (standard) forms such as
data sheets and (standard) tables, such as database tables. Each of
such a way of expressing meaning uses conventions or rules for
expressing and interpreting expressions. Consistent collections of
such conventions form coding systems that can also be called
‘languages’. The art (or science) of converting such ways of
expressing into data models is called information analysis and data
modeling. Semantic modeling is the methodology to express such
information in a formalized natural language, or in other words in
semantic information models.

A Gellish semantic modeling process begins with decomposing
meaning into ‘basic semantic units’ which are expressions in the
form of one or more (binary) relations between things, whereas the
relations are chosen from the standard kinds of relations in the
Gellish dictionary. As part of this process, indirect references to
things are replaced by direct references and implied relations are
replaced by explicit relations of explicit kinds. This process converts
complex and long sentences into collections of simple short
expressions. For example, a sentence such as

* the Erasmus bridge in Rotterdam which is red
is converted into four basic semantic units:

* the Erasmus bridge is located in Rotterdam

» the Erasmus bridge has as aspect CE

* CEis classified as a color

* CE is qualified as red

In the latter collection of expressions CE denotes an individual
aspect of the Erasmus bridge and the phrases <is located in>, <has
as aspect>, <is classified as a> and <is qualified as> denote implied
standardized kinds of relations in Gellish. The collection of
expressions can be visualized as a network in which the nodes

27



represent concepts and individual things and the edges represent
binary relations of specified standardized kinds between them. The
nodes in this mini network are related with other information that is
available about the concepts such as Erasmus bridge, color, etc. This
makes that the network forms a part of the total network that also
includes the language definition. Thus natural language sentences
are converted in collections of binary relations in Gellish.

But what about higher order relations, being relations that relate
more than two things? As will be explained later, the higher order
relations are not represented by edges, but are represented by nodes
in the networks and are modeled as a collection of binary relations
with their involved things. This simplified the structure of Gellish by
forming networked collections of only binary relations.

2.4.2 Separating concepts from terminology

Gellish deals with synonyms, abbreviations, codes and translations
for the same concepts and homonyms for different concepts by
distinction between the concepts themselves and the multiple names
by which they may be denoted.

As said before, concepts and relations represent meaning that is
language independent. Therefore, each concept and individual thing,
including each relation and kind of relation is represented in Gellish
not by a language dependent name, term or phrase, but by its own
language independent unique identifier (UID). This means that a
language defining taxonomy and ontology which include semantic
models that define concepts and kinds of relations can be language
independently represented by a network of relations between
identifiers of things. For users in a particular language community it
is required that the concepts are related to terms and synonyms that
form the vocabulary of their language. Thus the unique identifiers of
the concepts as well as the network of relations between the
concepts are language independent and need not be redefined for
other formalized languages in the Gellish family. As a consequence
the Gellish family of formalized languages share the same concepts
and structure.
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This enables the use of synonyms and homonyms and multi lingual
dialogs as well as automated translation of expressions that are
formulated in any formalized language of the family. This separation
between concepts and terminology is further discussed in chapter 5.

2.4.3 Separating intentions from topics

Natural languages use different word sequences, dependent on the
intention of the expressions. This variety of expressions is simplified
in Gellish by adding explicit intentions to the expression of topics
while using uniformity in such expressions, as explained below.
Human speaking or writing produces a stream of expressions by
means of a sequence of what can be called expression production
acts, also called ‘speech acts’ (Ref. 5, John R. Searle, Speech Acts).
Each expression production act produces an expression that is
intended to express what its creator means. A resulting expression is
a physical object, such as an information carrier, typically in the
form of an audible or electronic signal, or written ink on a physical
document. That physical object is a bearer of that meaning, but it is
not the meaning itself. Different persons can express the same
meaning, resulting in different physical expressions. For example,
the same meaning can be expressed in different languages. The
interpretation of those various physical expressions should result in
one common meaning (a common content). Such a common content
can be given a unique identifier (UID) and a description. We will
call such a piece of common content (a piece of) ‘qualitative
information’.

When different persons express information about the same topic,
they may exchange ideas about the truth of an idea, or they may
negotiate about the execution of an act. In such cases they have a
dialogue in which they create various expressions about the same
topic. For example, consider the following dialogue about whether
the Euromast is located in Rotterdam as follows:
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o Where is the Euromast located?

o The Euromast is located in Rotterdam.

o The Euromast is not located in Rotterdam.

o Is the Euromast (really) located in Rotterdam?
o Yes, the Euromast is located in Rotterdam.

All these five expressions are about the same topic'. A topic is a
state that may be the case, either in a real or in an imaginary world.
The topic in this example can be expressed as:

o whether the Euromast is located in Rotterdam.

It was Searle’s semantic analysis that demonstrated that the freedom
of expressions in natural language that leads to the variety as in
those five expressions can be transformed into a much simpler and
uniform structure. First it should be noted that the five expressions
differ in the intention with which each expression is communicated.
The above five intentions are:

. Question

. Statement

. Denial

. Request for confirmation
. Confirmation

In other words, the speaker (creator of the expression) has the
intention to communicate a question, a statement, etc. In linguistics
this intention is called the illocutionary force.

We can now transform the above four expressions in one simplified
uniform structure by wusing these intentions as separate
classifications of the idea, while leaving the expression of the idea
unchanged. This transformation results in the following expressions:

1 A topic may seem similar to what is called a proposition in logic.
However, a proposition may be a statement (which is true or untrue),
whereas a topic is not an expression, but something about which an
opinion may exist and about which an expression may be uttered.
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o Question: the Euromast is located in where

o Statement:  the Euromast is located in Rotterdam

o Denial: the Euromast is located in Rotterdam
o Request for confirmation: the Euromast is located in Rotterdam.
o Confirmation: the Euromast is located in Rotterdam.

The combination of a possibility and an intention forms a more
complete expression of an idea.

There are many more kinds of intentions. For example, we can
distinguish for example between a statement, a question, a request, a
promise, a command, a refusal, a denial, withdrawals of each of
them, etc. By default we can assume that the intention for an
expression is making a statement.

By identification of all those kinds of intentions it becomes possible
to simplify the large variety of natural language expression
significantly by transforming them into this structure in the Gellish
formalized language.

The above semantic analysis demonstrates that statements and
queries have the same semantic pattern. This suggests that there is
no semantic need to create a separate language for the formulation of
queries. In conventional information technology practice there is a
distinction between data definition languages for the expression and
storage of statements in databases and separate query languages for
the selection and retrieval of information from those databases. This
appears to be unnecessary.

The expression of queries will be further discussed in paragraph 2.6.

2.4.4 Expressing past, present and future

In natural languages we use various grammatically different
expressions to express whether something was the case in the past, is
the case in the actual world or will be the case in the future. This
variety in expressions can be simplified by explicitly specifying a
validity period and a status of each expression. Something is only an
expression of a historic fact if the status is ‘history’, ‘deleted’ or
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‘replaced’. This enables not to use inflections, such as is, was, be,
being, make, making and made, nor is it necessary to define such
inflections as synonyms. The validity period plus the specified time
determines whether something is the case in the past, present or
future.

This enables that Gellish adopted the convention of usually using
only the present tense, while adding explicit validity periods to the
expressions.

Another option is to model the time explicitly, not by the validity
period of the expression, but by including the time in the expression
as illustrated below.

Date of  Date of
Intention  Topic Status  start of change of
validity expression

The Erasmus bridge

statement  <js located in> Rotterdam e L2eE el

statement Temperature of R1 histo 2012-12-8 2012-12-8
<is on scale> 1 degC Y 17.22 17.22

statement Gl N DR LeC L proposed 1dec2012 2 dec 2012

15 January 2015

Table 1, Validity period

Table 1 presents some examples of statements that are all expressed
in the present tense, but only the second statement has a validity that
is in the past, because the status is ‘history’. The first and third
statements have statuses that do not denote a history, so that the
dates of (latest) change of the expression (including a change of
status) denote changes of the expressions and not termination of its
validity.

The status and timing columns in the above table are a
representation of some contextual facts. The contextual facts that
represent a validity period are illustrated in Figure 3.
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Figure 3, Validity period for a relation
These and other contextual facts are further discussed in chapter 13.

2.4.5 Use of singulars and numbers to denote plurals

In natural language we can use plural words when we denote
collections of single items. For example we can use the plural
‘books’ when we state that collection B consists of (only) books. If
we would accommodate for that in Gellish it would mean that the
dictionary should nearly be doubled in size with a double
specification of its taxonomic hierarchy or software should be able
to unambiguously deduce singular terms from the plural names in all
languages. This necessity is eliminated in Gellish by making the
collections explicit and by including special kinds of relations that
classify relations with collections that imply a relation with each
component in the collections. For example, we can express the same
meaning as above while using the singular word ‘book’ by stating
that every element in collection B is a book. By modeling in that
way Gellish does not need plural words in most cases. This is
achieved by applying the following rules (see table 2):

o Denote a concept (a kind) always in single form, except when
the concept (kind) is a kind of collection. Thus do not
specialize kinds of collections by the kinds of components in
the collection.

o Allow that individual collections have names that include a
plural term.

o Use explicit minimum and maximum simultaneous
cardinalities to denote constraints on numbers of individual
things of this kind that have a corresponding relation with a
single exemplar of the other kind.
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o For a relation with a collection that implies a relation with
each component in the collection use a kind of relation that
makes that explicit. For example use a kind of relation which
name starts with ‘each of which’.

Cardi  Right
Intention  Left hand object Kind of relation e hand
nalities .
object
Statement book has by definition 2,n page
Statement  Stock of books B is classified as a collection

Statement  Stock of books B Lok O.f WL book
classified as a

Table 2, Eliminating the need for using plurals

Such a simplification enables that a formalized language dictionary
need to include nearly only terms in single form.

2.4.6 Expressing contexts

Communication always has a creator and one or more (potential)
addressees. These and other facts make that communication always
functions in a context. If the same expression is uttered by different
persons at different occasions and different times, then it may have
different meanings. Therefore, the context in which an expression is
used is usually relevant for its interpretation. However, context is
often not an explicit content of an expression, but it is implied with
the expression. In Gellish we want to capture all aspects of
expressions that are relevant for a proper interpretation. Therefore,
any expression should include relevant elements that express the
context. We will call such contextual elements "contextual facts’
about the expressions.

The first contextual facts that we already encountered are answers to
the following questions:

o Who is the creator of the expression
o Who is the addressee of the expression

o When was the expression created
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These contextual facts illustrate that the above expressions, such as
the question ‘Is the Euromast located in Rotterdam?’ needs a context
for a proper interpretation and response. If you read the question in a
book (such as this), then you don’t need to respond, but if the
question is addressed to you, then you need to know who has raised
the question (the ‘author’). Thus a full semantic model should
expand the expression as follows:

The information creator John addresses addressee Mary on time t;
with the question: ‘Is the Euromast located in Rotterdam?’

Or simplified and formalized in tabular form:

Date-
];)(‘)Il)lrie(; Creator |Addressee | time of | Intention Expression of idea
creation
. the Euromast is located
101 John Mary t question in Rotterdam
. the Euromast is located
102 Mary John t assertion in Rotterdam

Table 3, Expressions with some contextual facts

A large list of kinds of optional contextual facts in Gellish is
discussed in chapter 13.

2.5 Commands

A message in a formalized language, typically consisting of a
collection of expressions, may be preceded by a command that
indicates the start and the nature of the collection and may be
followed by a command to terminate the execution of the command.
For example an insertion command has the following pattern:

Name of Name of
Intention | left hand Name of kind of relation right hand
object object
command insert the following expressions into | uri/filename
statement
statement
command | terminate the execution of insert

35



A query command has the following pattern:

Name of Name of right

Intention | left hand Name of kind of relation . g

. hand object

object

command select the following expressions from |  uri/filename
question
condition
command | terminate the execution of select

Depending on how a sender qualifies the ‘intention’ of the
expressions, the interpretation may result in an insertion of new
expressions in existing expressions, or as a modification (delete,
historicize or replace) of expressions, or as a query that requires a
response to the sender.

A receiving system (an information user or addressee or hearer) that
receives such a message should start the interpretation of
expressions in such a message by validating it in order to verify that:

* The expressions are semantically correct (see par. 3.7).
For example, UIDs should be unique and in the correct
range, kinds of things should be known according to the
dictionary or they are properly defined within the message,
the left hand and right hand objects shall be of the correct
kind, etc.

* The message is internally consistent and without duplicates,

An insertion or modification command then requires to verify
whether the message is consistent with or duplicates existing
expressions. This requires comparing each expression in the
message with the expressions about the things that are mentioned in
the message and that are already included in the receiving system.
Therefore, the interpretation continues with the execution of a query
on the expressions that are already included in the receiving system.
The result of such a query will include requirements, constraints,
possibilities and definitions of concepts. This enables the receiving
system to verify the consistency of the new expressions when
compared with the existing expressions and enables to further
process the insertion.
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A query command or ‘select’” command can be executed without
further validation. The results can be returned in a message that is
preceded by a report command as follows:

Name of Name of
Intention left hand Name of kind of relation right hand
object object

command report | the following expressions from | uri/filename

answer

confirmation

denial

command terminate the execution of report

The report can then be post-processed and converted into other
layouts, using a report generator.

2.6 Queries and insertions

A query typically consists of a collection of one or more expressions
about one or more unknowns. In Gellish, the expression(s) form a
mini semantic network or search pattern that includes the
unknown(s) and that is intended for finding known objects that have
a pattern that corresponds with the search pattern. A query is
answered by reporting the found knowns together with information
about them.

Queries that are expressed in conventional query languages for
databases such as SQL and SPARQL have structures that are quite
different from expressions of statements (propositions) in those
languages. This differs from natural languages in which queries and
statements, as well as denials and confirmations have nearly the
same structure and use the same terminology. This raises the
question whether the Gellish language that is used to express
statements (propositions) can also be used for the expression of
questions.

Some differences between kinds of expressions, such as changes in
word sequences and the use of question marks, can be eliminated
completely when the ‘Speech act’ theory of John Searl is applied. As
described in the previous paragraphs, Searl demonstrated that the
expressions can be made identical by explicit mentioning a separate
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‘intention’ for each expression. For example, the following three
expressions only differ in their intention:

Intention Topic

statement book B-1 has a price of 110 dollar
question book B-1 has a price of 110 dollar
confirmation book B-1 has a price of 110 dollar

The intention on the second row indicates that the second expression
of the topic shall be interpreted as a question. As there are no
unknowns included in the expression, it implies that the question
asks for a confirmation or a denial, which is equivalent to the answer
‘yes/no’ or ‘true/false’.

This illustrates why the ‘Speech act’ theory and other conventions
open up the possibility for using the same formalized language for
statements (in exchanges messages or data stores) as well as for
insertion commands, for queries and for responses (answers),
promises, etc. as is described below.

Therefore, a general model of a query about an object, when
expressed in Gellish, is the same as a general model with assertions
about any object, apart from the fact that expressions in a query have
the following characteristics:

o The intention of an expression in a query has the value ‘question’ or
‘condition’. A condition provides a further specification of the
conditions that should be satisfied by the unknown target object(s).

o The unknowns and collections of unknowns in a query are
represented by UIDs that should be in the reserved range 1-99,
possibly preceded by the prefix ‘unkn:’. And application software
may generate such UIDs automatically from names that are
preceded by question marks.

o The names of the unknowns are free text.
If nothing about the name(s) is known, then it is recommended to
take a name from the list of reserved names as specified below or to
use names that start with a question mark (?) as is the same as the
convention for SPARQL. This freedom for names enables searching
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on string commonalities (see below).
For example, what, what-1, which person, or ?person.

o It is allowed to specify a part of a name of a searched object in

combination with a specification of ‘string commonalities’ as
defined below.

2.6.1 Names and UIDs of unknowns

Thus objects with a UID in the range 1-99 are by definition
interpreted as unknowns that are searched for on the basis of
expressions that specify the search criteria. This should be consistent
with the ‘intention’. For example, an unknown with UID ‘1’ might
be denoted by a name that is just a question mark (‘?’) or a question
mark followed by a dash and a sequence number (‘?-1°), or any
other string that is not a name of a known thing. To facilitate that,
the following terms are reserved and automatically interpreted as
unknowns:

o what

o who

o which xx, whereas xx stands for some kind. For example ‘which
person’, ‘which pump’, etc.

o where

o when

o how many

o how much

The use of any of these terms or of terms that start with a question
mark (such as ?7person) supports for a human user that the
expression should be interpreted as a question. For software that
interprets the formalized language expressions the name as well as
the UID in the range 1-99 (possibly with prefix ‘unkn:’ can be used
to determine that the expression contains an unknown and thus
should be interpreted as (part of) a question.

The above reserved terms may be used more than once for different
unknowns provided that different UIDs are used to identify the
unknowns. However, it is recommended that the unknowns have
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different names, for example by extending a standard name with a
dash and a sequence number. For example what-1, what-2, etc.

2.6.2 Simple questions

One pattern for a question is: “what are the object(s) that have
particular types of relations with other specified objects?” For
example, the question ‘what is classified as a pump’. This question
has no UIDs yet. This it is not excluded that a first search may find
different concepts with the same name (homonyms). Therefor, a
system should reflect the question by asking for verification that the
question is properly interpreted as is expressed in Table 4:

43 | 2 101 1 3 15 201
|UID of leff Name of | UID Name of kind UID of Name of
Intention ha.nd left pand ) of of relation right.hand right‘hand
object object idea object object
question 1 what 301 | isclassifiedasa | 130206 pump
Table 4, A Query

The question that is expressed in Table 4 asks for the object(s) that
have a relation of type <is classified as a> with the object 130206
(pump). This expression can be unambiguously interpreted by a
computer as a question, because the intention ‘question’ expresses
that it is requested to identify the unknown object(s) that satisfy the
kind of relation, and it is defined for the family of Gellish languages
that a UID in the range 1-99 is an identifier of an unknown, whereas
for a human reader the term ‘what’ (or e.g. ‘?7pump’) denotes an
unknown.

Furthermore it is common logic that the inheritance rules define that
the question: “what is classified as a pump?” implies: “what is
classified as pump or is classified as one of the subtypes of pump?”.
It even also implies: “what has a relation with the concept ‘pump’ or
its subtypes whereas the relation is a classification relation or a
subtype of classification relation”.

Advanced software should be able to use this as a basis to
automatically generate the answer as a list of pumps with their
characteristics. Such a list could for example consist of one bicycle
pump and two centrifugal pumps, all three being a subtype of pump
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and a water pump, not being a subtype of pump, but a role of a
pump. Thus the response could be as follows:

P-1 is classified as a bicycle pump
P-101 s classified as a centrifugal pump
P-102 s classified as a centrifugal pump
P-301 hasaroleasa  water pump

For such an implementation see the Communicator reference
application on GitHub.

2.6.3 String commonalities

Software should enable searching for objects by character strings
that only partially match with the name of the objects. A
specification of such conditions is called a specification of the string
commonality. Thus a string commonality is a specification of the
conditions under which a search string (term) at the left hand or right
hand of an expression should be considered as matching with one or
more target strings (names of things). For example, it can be
specified how to find all things that are denoted by a term (have a
name) that contains a capital P. This requires the specification of
string commonality value ‘case sensitive partially identical’, which
specifies that a search string shall be identical to a part of the target
term, whereas the case (upper case or lower case) of the part shall
match.

An Expression for a query contains two additional components
(component ID 80 and 81) in which the commonality criteria for the
left hand and the right hand term can be specified. The allowed
values for string commonalities are:

csi:  case sensitive identical

cii: case insensitive identical

cspi: case sensitive partially identical
cipi: case insensitive partially identical
csfi: case sensitive front end identical
cifi: case insensitive front end identical
csd: case sensitive different

cid: case insensitive different
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e: equal

unequal
le:  less than or equal
ge: great than or equal

2.6.4 Conditions in queries

A query may contain additional conditions on the unknown(s). For
example, Table 5 presents the expression of the query ‘which P-1 is
classified in some way’, whereas P-1 may be preceded and/or
succeeded by additional characters, while that ‘?P-1?" also has an
aspect that is classified as a height.

43 2 101 60 3 15 201 80
UID of | Name | vy, _[UIDof | Name |y o pang
Intention left | of left Kind of Name of !(md right | of right string
hand | hand relation of relation hand | hand commonality
object | object object | object
case sensitive
question 1 P-1 1225 | is classified as a 2 how partially
identical
question 1 P-1 1727 has as aspect 3 what

condition 3 what 1225 | is classified as a | 550126 | height

Table 5, A Query for objects with aspects

The Query Table 5 includes three unique identifiers (UIDs) in the
range 1-99. The first one (1) indicates that P-1 is a string that
denotes an unknown object. The first line also includes a ‘left hand
string commonality’ that indicates that search string P-1 may be only
a part of the target string(s), whereas the P in the target string(s)
shall be in uppercase. Furthermore, only the expressions are
requested in which the target object is classified, although that may
be in any way (‘how’). The results of this query may well deliver the
same three pumps as in the above example.

The second line asks for aspects of the resulting objects, whereas the
third line specifies the condition that only the aspects are requested
that are classified as a height. For querying aspects, Gellish uses the
following rule:
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When a query asks for an individual aspect, then the response should not
only provide a possible name of the aspect, but should also provide its
classification, its value and if applicable the scale for the value.

Therefore, a possible response on the above query could be:

P-1 is classified as a centrifugal pump
P-1 has as aspect h-1

h-1 is classified as a height

h-1 has on scale a value equal to 600 mm

Note that Table 5 contains two questions. This means that P-1
should be reported anyway, also when the searched dataset would
not contain its height. If the intention on the second line would have
been a condition instead of a question, then P-1 should not be
reported as it does not satisfy the condition to have a height.

2.6.5 SQL equivalent inserts and queries

Data manipulation languages (DMLs) or Query languages such as
SQL are designed to be independent of database structures and of
languages that can be used for their content, as long as the database
structure is tabular. They do not put any requirements on the tables
in the database, neither on their names nor on their columns and
column names. This freedom is required because a lack of
standardization in database creation methodologies causes that, even
when different databases contain the same information about the
same kinds of things, those databases are generally composed of
different tables, with different table names and different numbers of
columns with different column names. Thus INSERTs as well as
SELECT statements (for queries) will be different for each database.

This freedom implies that these languages presuppose that authors of
inserts and queries have knowledge about the internal structure
(syntax) of the queried database as well as of the used terminology
for table columns and table content. Thus, SQL and other query
languages themselves do not deal with any meaning (semantics) of
the columns of the tables and are also independent of the
terminology that is used for the content of the tables. They are
generic query languages that contain a minimum of semantics.
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Insertion

This can be illustrated on the insertion of some data in a relational
database. For example, the following simple insertion of prices,
titles and classification of books in a database table called ‘Book’ is
written in SQL as follows (this example is adapted from
http://en.wikipedia.org/wiki/SQL):

INSERT INTO Book

(title, price, type)

VALUES

(‘B-1’, 110)

(‘B-2’, 120, ‘paperback’) ;
Apparently the author of this insert knows (and must know) that
there exists already a table, called ‘Book’, that has at least three
columns, called title, price, and type, whereas he also knows that a
title is the title of a book and a price on the same row is the net
selling price (in dollar) of a single copy of a book with that title and
that a type denotes a subtype of the concept book that classifies the
book on that same row. The insert statement also introduces a new
free term ‘paperback’ in the vocabulary of the content, unless the
term ‘paperback’ is a predefined allowed value for ‘type’. (Note that
a column ‘type’ in another table in the same database may have
another meaning.)

The same content could however be stored in a databases that have
different definitions. For example, the database ‘Product’, with
columns that have names such as ‘name’, ‘net price’, ‘product type’.
Then the INSERT would have been different, although the content
would be the same, and the queries on those two databases will also
be different.

Selection

Data can be retrieved from such database tables with queries that are
expressed in such query languages and those expressions are also
dependent on the database structure. This can be illustrated on an
example select statement from a ‘Book’ table, which is expressed in
SQL as follows:
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SELECT *

FROM Book
WHERE price > 100.00 ;

This simple query apparently assumes the same knowledge from its
author as is required for an insertion.

Also for queries holds that the same question should be formulated
in a different way when it was a query on the ‘Product’ database. It
should also be noted that the expressions for insertion of information
are significantly different from expressions of a query about the
same information and those expressions are again different from
expressions that present the results of a query.

Equivalent inserts and selects in Gellish

If the Gellish formalized language is adopted for expressing inserts
and queries, results and messages, then the structure of expressions
as well as their content are all the same. This is achieved by the rule
that all Gellish formalized language expressions have the same
expression components (thus they all can be stored in one collection
of standard expression components) and that all Gellish expressions
use the same (extensible) taxonomic dictionary with predefined
concepts. This also hold for example for terms such as book, title,
price and paperback. Furthermore, the expressions for insertion are
similar to the expressions of queries and to stored and exchanged
information.

Thus formalized language expressions of insertions and queries are
only determined by the semantics and are not determined by the
many possible database structures, and they are independent on the
variety of terminology that is used in current practices for names of
entity types and names of attribute types.

This means that information that is expressed in a formalized
language can be inserted in any database that is based on the
formalized language or that has import and export mapping to the
formalized language expressions (within access and requirements
constraints). Thus the system independent expressions don’t need to
be rewritten for other databases. Table 6 presents an example of an
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insert command for information about the prices of two books with
expressions in a formalized language that are database independent.

UID of UID of
lefe | Nameol | eofkind | right | ameof
Intention | . left hand e ot 81 | right hand | UoM
hand obiect of relation hand obiect
object J object J
command | 195070 | insert | thefollowing |5, ABC
expressions into
statement 102 B-1 is classified as a | 490023 book
statement 102 B-1 has as aspect 103 P-1 of B-1
statement 103 P-1 of B-1 | is classified as a | 550742 price
statement | 103 | P-1of B-1| fasonsealea | g50356 | 4y $
value equal to
statement 104 B-2 is classified as a | 493755 | paperback
statement 104 B-2 has as aspect 105 P-1 of B-2
statement 105 P-1 of B-2 | is classified as a | 550742 price
statement 105 P-1 of B2 has on scalea | 920376 120 $
value equal to
command | 193423 | terminate |the execution of | 195070 insert

Table 6, Insert product data in database ABC

Note: Each row in Table 6 represents an expression. The names of
objects are repeated for readability and UoM means Unit of Measure
or scale. Table 6 only shows a subset of the components of Gellish
expressions and thus of the columns in a Gellish Expression Format
table. In a full Gellish Expression Format each line has more UIDs
and contextual facts, such as the validity period, status, originator,
etc. This enables for example adding multiple prices in various
currencies and each with its own validity time period, if the
cardinality constraints allow for that.

The body of Table 6, without the first and the last line can be copied
exactly into a database table, such as ABC, because the storage table
has an identical expression structure.

The above query in SQL is expressed in a formalized language as
follows:
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UID of UID of
left Name of Name of kind of | right Name of
Intention left hand . right hand | UoM
hand biect relation hand obiect
object obJ object J
command | 193617 select the fo.llowmg 101 ABC
expressions from
question 1 7Book-1 | isclassifiedasa | 490023 book
question 1 ?7Book-1 has as aspect 2 ?Price-1
question 2 ?Price-1 | isclassified asa | 550742 price
has on scale a
question 2 ?Price-1 value greater 920053 100 $
than
command| 193423 | terminate | the execution of | 193617 select

Table 7, Query on ABC in the form of a product model

Comparison of Tabel 6 with Tabel 7 shows the similarity of the two
models, which demonstrates that the expression of information and
the expression of queries can be done in the same language. Thus
there is no need for a dedicated query language.

Note: A query may search for and select from more than one table at
the same time. Because the various tables have the same definition,
tables do not need to be JOINed; only the search results should then
be presented to the user as a combined result.

The query that is expressed in Table 7 illustrates that software
should take the taxonomy of concepts into account. For example, the
taxonomic dictionary specifies that the concept paperback is a
subtype of book. If the software processes that information correctly,
then a query on book will also find the paperbacks. This hierarchy
enables to simply modify the query to search e.g. on paperbacks
only or on any other subtype. This would be more complicated in an
SQL search in the above table ‘Books’.

In SQL and asterisk (*) can be used to specify that ‘all’ attributes
from a table should be reported. This assumes that the authors
knows what ‘all”’ means, thus which attributes are in the table.
However, ‘all’ does not mean ‘all information about the selected
books’. Because, when there is information about the books in other
tables the query becomes more complicated. In Gellish modeling
approach the kinds of relations that are queried can be specified
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more precisely. For example the query in Table 7 uses kind of
relation <has as aspect> and thus it only asks for aspects, whereas on
the following line it is specified that only aspects are required for
which holds that the aspect <is classified as a> price. The query can
easily be extended with additional requests for other information,
such as:

question What-1 is located in SOFne
location-1
question 105;;22-1 is classified as a building
Or with the very generic question:
question What-1 is related to A-1
question A-1 is classified as a anything

This latest question asks for everything that is known about the
books.

2.6.6 SPARQL and RDF

SPARQL is a query language that is especially made for querying
databases that are formatted conform RDF, also called ‘triple stores’.
As shown above, the semantics of questions and other expressions
require more than just triples, such as units of measure and
contextual facts. That is the reason why many implementation
specify extensions of RDF to represent collections of triples, which
are called ‘named graphs’ as is also applied in ISO 15926-11, which
standardizes an RDF implementation of Gellish Formal English.

Extended RDF implementations of a formalized language can use
SPARQL directly. However, RDF itself defined a syntax and a
minimum of semantics (it only defined a few concepts), just as SQL.
This enables that in RDF expressions any kind of relation
(‘predicates’ in RDF) and any left hand and right hand term
(‘subject’ and ‘object’ in RDF) can be used. Thus everybody can use
his or her own ‘namespace’ and own ontology. This powerful
flexibility at the same time reveals the weakness towards
interoperability, because RDF does not standardize the language in
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which databases, messages and query contents can or shall be
expressed.

The expression of inserts and queries can be made database system
independent only when an extended RDF is combined with a
semantically rich formalized language, such as Formalized English.
Such a combination provides a language that includes semantics as
well as syntax (format).

Another question is whether the SPARQL syntax is to be preferred
above the tabular Gellish Expression Format syntax as is used in
Table 6 and Table 7. The commonalities and differences between
these two formats can be illustrated on the SPARQL example query
for a ‘foaf’ (friend of a friend) database
http://en.wikipedia.org/wiki/SPARQL.:

PREFIX foaf: http://xmlns.com/foaf/spec/
SELECT 7name ?email
WHERE {

?person a foaf:Person.

7person foaf:name ?name.

7person foaf:mbox ?email.

}

The above example shows that SPARQL also presupposes
knowledge about the particular structure of the queried database.
Although the structure of RDF expressions is database (data model)
independent, this example demonstrates that this query is dependent
on the structure of the foaf database and relies on the understanding
of the content of the foaf ontology (http://xmlns.com/foaf/spec/),
which includes a database structure (table definitions) with
definitions of ‘classes’ (entity types) that have pre-defined
‘properties’ (attribute types). For example the class foaf:Person is
not the same as the generic concept ‘person’, because the foaf
ontology defines a foaf:Person as a person that has a number of
predefined ‘properties’ (attributes) with specific names. Thus a
foaf:Person 1is factually defined as a particular collection of
‘properties’. For example the foaf ontology pre-defines that a
foaf:Person can have or has a surname, as well as e.g. publications
and a currentProject, and inherits an mbox. Apparently the foaf
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ontology defines a very specific ‘language’ that cannot be merged
with other ontologies/languages and thus the query will only work
on a foaf database and shall be rewritten for any other database.

This demonstrates why the neutral form of expressions in Table 6
and Table 7 has advantages.
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3 Semantic models in formalized languages

Definition: A Semantic Model is a chain or network of
formalized expressions (also called an information model) in
which the meaning of the content (data) can be interpreted
from the model itself, without the need to consult separate
information about that data.

The formalization implies that meaning can be expressed as a
collection of connected expressions, called units of communication,
that are syntactically and semantically comply with the language
definition, and are computer interpretable. The definition
furthermore states that the expressions include all information that is
required for their interpretation, without the need to consult system
documentation, such as meta-data, data models (database definition
schemas) or program code.

Expressions in semantic models comprise terms as well as phrases
or verbs that relate the terms. The terms represent things about
which something is expressed and the phrases or verbs represent
relations of particular kinds between the things that are represented
by the terms. Expressions therefore consist of relations between
terms, which relations are classified by explicitly defined kinds of
relations.

To some extent it is possible to regard natural languages also as
being semantic models. The allowed sentence structures form the
possible structures of ‘messages’ and the allowed terms and phrases
define the remainder of the language. The enormous freedom to
make sentences in natural languages mean that the underlying
semantic patterns can be very complicated and flexible, whereas
different users apply different parts of the allowed structures when
they make sentences. This makes it very difficult for computers to
interpret and to generate natural language expressions. This is the
reason to formalize and predefine the allowed sentence structures
and the allowed terms and phrases in the definition of a formalized
language.
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The above definition also states that a Semantic Model is a
collection of expressions in a formalized language. A formalized
language means that the grammar (the syntactical structure of the
expressions and the lexicon) of the language is explicitly defined
(and thus limited) and that the allowed components that are used in
the expressions are also explicitly defined. Such explicit definitions
can be pre-defined in the dictionary of the formalized language, or
they can be user defined as part of the model.

Simple semantic models can be presented graphically as networks of
nodes and vertices, although such networks wusually ignore
intentions, classifications and contextual facts. Such networks are
often called graphs. Nodes in such networks represent anything that
can be thought and communicated about, real as well as imaginary.
The vertices represent (binary) relations between the things that are
represented by the nodes. These binary relations represent expressed
ideas, such as statements, opinions or questions about topics or
states of affairs.

Semantic databases that support the storage of information that is
expressed in a formalized language should have data structures that
support storage and retrieval of any semantic expression in that
formalized language. Therefore, they should enable storing a
definition of the formalized language as their common initial
content, followed by storing expressions of ideas that are expressed
in that language. Thus, software should be able to interpret any
semantic model in that formalized language. Preferably it should
also enable treating different semantic models as if being one
distributed model.

Interoperability or integration of semantic databases that apply the
same formalized language thus should only require verification and
management of the consistency of their content.

Semantic modeling thus means that a sending party creates semantic
models in a formalized language that include sufficient expression of
meaning such that the meaning can be inferred from the models by
the computer of a receiving party that can interpret the formalized
language.
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3.1 Scope: information, knowledge and

requirements

The scope of a conventional information model is limited by the
definition of the data model for which the model enables making
instances. The scope of a Gellish semantic model is in principle
unlimited, because the formalized language has no scope limitations.
For example, a conventional Building Information Model (BIM) will
have a scope that is defined and limited by the scope of its data
model (for example the IFC data model of ISO 16739). However a
BIM in the form of a ‘semantic model’ does not have constraints on
its scope. Therefore, the required scope of a semantic model can be
defined explicitly by the party that requires the model.

Information that is exchanged between parties or is stored in
databases can be very different. It includes models of information
about individual thing, but it also includes knowledge models, which
consists of expressions of what can or might be the case about kinds
of things in general. Furthermore it may include generic requirement
models with the expression of what is required for kinds of things or
requirements for the realization of individual things, such as is
typically expressed in designs and specifications. It may also include
definitions of things that are by definition the case. All such
information can be covered by Gellish semantic models and can be
expressible in Gellish formalized languages.

The scope of the expressions that are considered in this document
thus covers expression of things that are the case, or that may, can or
shall be the case, and that the expressions are communicated with
any of the possible intentions, such as statements, questions,
answers, promises, etc.

3.2 Expression capabilities of formalized languages

The expression capabilities of a formalized language are mainly
determined by three components:

o The number of different kinds of things that can be ‘said’. In other
words: the number of different kinds of expressions (sentences) that
can be made.
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o The amount of information about the context in which the things are
said.

o The extent of the vocabulary that is available in the language.

It appears that natural languages can be formalized because of the
following observations and experience:

o Ideas as well as questions can be formulated in the form of networks
of relations between things.

o Relations can be classified by kinds of relations, whereas it appears
possible to predefine a collection of (standardized) kinds of relations
that provide a rich semantic expression capability.

o Meaning of expressions is mainly determined by the definitions of
the kinds of relations and the definitions of the related things and the
intention with which the expressions are made.

o Each relation has a context that can be expressed as a collection of
contextual facts.

With the above observations in mind, the expression capabilities of a
formalized language are mainly determined by the following three
components:

o The variety of kinds of relations that are defined as part of the
language definition (the language defining ontology).

o The richness of the number and kind of contextual facts that express
the context for interpretation.

o The number and richness of concepts and their vocabulary that are
defined in the taxonomic dictionary.

The kinds of relations for the Gellish family of formalized languages
are described in this book. Definitions, terms and phrases that denote
those standard kinds of relations are provided in the Upper Ontology
section (base ontology) of the Gellish Formalized English
Taxonomic Dictionary-Ontology [Ref. 4]. Additional definitions of
kinds of higher order relations are provided in the mathematics and
activities and processes domains of that dictionary.

This book addresses mainly the components:
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- kinds of relations,
- the kinds of roles that are required by those kinds of relations,
- the kinds of objects that by definition have such roles (role players)

- the kinds of contextual facts that can express the context of
expressions

The vocabulary of the formalized language is formed by further
subtypes of the concepts and are not discussed in this book, but can
be found in the dictionary. This book is intended mainly as a
clarification on why and how ideas and questions can be expressed
in a formalized language, using the available kinds of relations. It is
especially intended to clarify the logic that helps finding the proper
kinds of relations for making expressions. Once a kind of relation is
found, the definition of the relation, as provided in the dictionary-
ontology, will further specify the required roles and allowed roles
players in such a relation. This document also describes what can be
done in case a new kind of relation or a new concept seems to be
required.

The way in which the interpretation context is expressed and
corresponding kinds of contextual facts are defined is described in
chapter 13.

3.3 Models of expressions of ideas

To facilitate users in making expressions in a formalized language
and thus in building semantic models, we intent to develop generic
patterns for expressions in semantic models. Each pattern should be
a pattern for a collection of expressions that is minimally required to
express a unit of communication, thus making a statement or
expressing an idea about any topic. We define a unit of
communication as an expression of an idea about a topic that
comprises basically only one relation. Such a relation may be
composed of atomic and elementary relations.

Before we discuss those patterns, we first need to discuss how to
express an idea about a topic.
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Topics are possible states or possibilities in a real or imaginary
world. Any topic may be the subject in an expression of an idea
about the topic. Consider the following topic about something in the
real world:

‘whether the Euromast is located in Rotterdam’. (1)

A semantic analysis of this topic will result in the conclusion that it
is about a possible state, expressed as relation of a particular kind,
which kind of relation is defined as a relation between two single
individual objects. This conclusion is reflected and captured in the
classification of the things and the classification of the relation.
From the expression we can infer that ‘Euromast’ refers to (denotes)
a possible object in the real world.

The meaning of this expression thus is:
o Probably there exists something called ‘Euromast’, and

o There is some ‘predicate’® about it, namely the possibility of its
‘being located in Rotterdam’.

The second part of expression (1) allocates a ‘predicate’ to the
referred object [Searle, Ref. 5]. Our interpretation of the predicate
‘being located in Rotterdam’ reveals that it contains a reference to
another possible object, which suggests:

o Probably there exists something called ‘Rotterdam’.

Finally the predicate contains the phrase ‘is located in” which must
be the specification of the reason why the two referred possible
objects are related according to the expression. The phrase ‘is
located in’ is a phrase that we can recognize as a repeating pattern in
similar expressions about things that ‘are located in’ other things.
This ‘standard’ phrase apparently denotes a general concept or idea
of ‘being located in something’. The phrase does not directly denote

an individual relation, but it is a general phrase for a kind of relation

2 A predicate is sometimes called a property. However, we will use the
term property only, with the connotation of some kind of facet and
ownership, for quantifiable aspects that are intrinsic to a possessor of the
aspect. For example length, color, etc.
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that is used in expressions about individual relations between pairs
of individual things. This means that it is a kind of relation that is
used for classification of the individual relations between two
referred individual objects.

This leads us to the conclusion that an idea is usually expressed by
the intention ‘whether’, followed by a sequence of three terms or
phrases. For the above example this expression is:

o whether

the Euromast

is located in

Rotterdam

This means that the model of Table 3 can be extended into the model

of Table 8.

|

prreslfreato
ionid| r

Addres|
see

Date-
time of
creation|

Intention

First referred
object

Kind of
relation

Second
referred
object

John

Mary

t

question

the Euromast

1s located in

Rotterdam

Mary

John

t

statement

the Euromast

is located in

Rotterdam

Table 8, Model of an expression with some contextual facts

Linguistic analysis of phrases, such as ‘is located in’, will
conventionally start from the grammatical components, being the
words, such as
discussion of the roles of categories of words, such as verbs, like
‘being’ and ‘locating’, etc. as basic concepts. However, our semantic
analysis is searching for semantic concepts® that represent distinct
meanings. Such a semantic concept is primarily a concept in
people’s minds that is used in thinking about the real world or about
an imaginary world. Our hypothesis is that concepts, such as ‘being
located in’, are generic semantic concepts in human thinking. If that

3

is’, ‘located’ and ‘in’. This usually leads to a

3 Semantics deal with concepts rather than words, because the concept
‘word’ is a grammatical concept and not a semantic concept. Words may
denote anything and they are natural language dependent. The concept
‘verb’ is not very helpful either as a semantic concept as it may indicate a
static relation as well as a dynamic occurrence. Furthermore, a kind of
activity may be denoted by a verb (e.g. in W1 is classified as walking) as
well as by a noun (e.g. WI is classified as a walk), whereas those

classification express practically the same meaning.
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is the case, then it is basically irrelevant how such concepts are
expressed in various languages. The concept itself is language
independent. Only the grammar of the language and the available
vocabulary determine whether the concept is denoted by a sequence
of three or four words in English or by one or more character in
Japanese (written Japanese only recognizes characters and no words)
or in whatever way.

Semantic analysis has the task to reveal the variety of semantic
concepts that are represented by phrases that are in use to express
the various kinds of states of affairs in the real and imaginary world.
For example, it should clarify what the relation is between concepts
such as ‘being located in something’ and concept ‘being located
somewhere’. The identification and definition of those semantic
concepts should result in a dictionary of semantic concepts that are
used to express why referred objects are related according to
expressions. The availability and maintenance of such a dictionary is
an essential component of semantic modeling.

Expressions of ideas

Expressions of ideas in a formalized language have the following
characteristics:

o They contain kinds of relations and their denotations by terms or
phrases that have unambiguous definitions.

Those kinds of relations:

o Define the nature of the relations that relate concepts and individual
things in syntactic structures by classifying those relations

o Define the roles that are by definition involved in those relations

o Define the requirements for role players in those relations.

3.4 On denoting

The above analysis of the topic ‘whether the Euromast is located in
Rotterdam’ was basically an analysis of various expressions (1-5).
From that analysis we concluded that people apparently use a
generic concept of ‘being located in’ something, in a generic pattern
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to create expressions about individual things that are located in other
individual things.

As said before, semantic modeling typically starts with a state of
affairs in the real world or in an imaginary world. A basic
assumption of semantic modeling is:

human beings share notions of individual things and concepts
(kinds of things), although they may denote them with different
terms or phrases.

In other words: human beings generally recognize the same
individual things and concepts in the real world or if they create
things in a realistic imaginary world, then those things can be
recognized by others.

When we want to communicate about the shared recognized things
and concepts, we cannot use the things and concepts themselves,
unless the things are present so that we can point to the things.
Therefore, instead of the things themselves, we should use shared
unique identifiers (UIDs) that unambiguously refer to the things and
concepts, so that those identifiers can be arranged in syntactic
structures to create universal expressions. Then we can replace the
UIDs by terms and phrases with which we denote the things and
concepts in various languages to make natural language expressions.

We will illustrate this process by modeling a
real world situation (state) and derive the
semantic expression from that. Assume that
the Japanese Okada was on holidays and
crossed a border of what appears to be a
city, where he sees a sign with the name of
the city ‘Rotterdam’. Thus, since then he is
aware of an individual thing (UID 1) which
he denotes as ‘Rotterdam’ and which he
classifies as ‘city’. Then he saw a building
from which he took the picture as shown
(UID 2):

Then Okada was told by a guide that the building is called ‘the
Euromast’ (UID 3).
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When Okada came home in Japan, he documented his trip for his
wife Oni with the following statements:

the Euromast is located in Rotterdam

This information is related to his knowledge about these objects,
such as:

the Euromast  is represented on  picture-1

picture-1 is classified as a photo

the Euromast  is classifiedasa  building
Rotterdam is classified as a city
Rotterdam is located in Netherlands

According to our assumption, human beings are familiar with shared
concepts, so that we can allocate universal UIDs to them. Examples
of such shared concepts are: ‘photo’ (4), ‘being represented on’ (5),
‘being located in something’ (6), ‘city’ (7), ‘building’ (8) and
‘classification’ (9), ‘Netherlands’ (10). (Note: these UIDs are not
official Gellish UIDs.)

When the English terms and phrases are replaced by the UIDs to
denote the generally shared things and concepts, then the
expressions become as is presented in the following table:

3 6 1

3
2
3
1
1
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0

This table is a language independent representation of the
expressions, which can be presented to a user in Japanese as well as
in any language, provided that a dictionary is available that links
numbers that represent concepts and individual things to terms.

3.5 Syntactic and semantic patterns

A syntactic structure is a linguistic structure, which means that it is a
structure of spoken or written or computer encoded communication.
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For the purpose of this document we ignore other kinds of
communication, such as body language.

Definition: A syntactic structure is a linguistic structure in which
linguistic representatives of concepts are or may be arranged in
order to express meaning.

A human being or computer can only communicate about ideas
about what can be the case in practice by using representatives of the
things about which is communicated. Such representatives of
concepts are typically linguistic components that are also called
terms, such as words (lexemes) and phrases, including also
abbreviations, codes and names. For example, the fact that the Eiffel
tower is located in Paris, can be communicated only by expressing
that idea using words and phrases that are representatives of the
concepts Eiffel tower and Paris, but also a representative of the idea
of ‘being located somewhere’.

Syntactic structures are studied extensively by linguists. See for
example Noam Chomsky’s Syntactic Structures (Ref. 2). Every
language has its own Grammar, which consists of the allowed
structures for its expressions (syntactic rules) and its terminology
(lexicon), and they are all different, unfortunately. But the meanings,
the semantics that are expressed in those languages are language
independent. So, there is one meaning and many possible
expressions.

Valid expressions in a particular language shall be syntactically
correct, semantically correct and shall express the intention of the
originator of the expression.

An expression in a particular language is syntactically correct when
it consist of terms that are arranged in positions (slots) in syntactic
structures that are valid for that language, whereas each term
represents a concept which kind is allowed for the slot it occupies.
Syntactic rules describe which kind of concept is allowed for which
position in a syntactic structure of a particular language. These rules
indirectly determine which terms may appear in which position in a
particular structure.
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For example, assume that an artificial language L is defined by the
simple syntactic structure for expressions in L that consists of an
Object—RelationType—Object (O-RT-O) structure. Assume that L is
also defined by the rules (constraints) that any linguistic
representative of anything may take an O position and only a
linguistic representative of a kind of relation may take the RT
position in an expression. Then every expression that consists of a
sequence of a term, a kind of relation and another term, is a
syntactically correct expression in L.

Assume further that the definition of L is extended with the
additional grammatical rule that only linguistic representative terms
and phrases may be used that are selected from an English Lexicon.
Then the expression ‘the Eiffel tower <is located in> Paris’ is
syntactically and grammatically correct in L.

However, also ‘John <is author of> Paris’ is syntactically and
grammatically correct in L. Thus the grammatical rules allow for
nonsense expressions as well as sensible expressions.

The syntactic and grammatical rules are not suitable to determine
whether the expressions are semantically correct. This requires
semantic rules and expressed knowledge.

Semantic patterns consist of syntactic structures that are
accompanied by additional semantic rules about the kinds of roles
that are by definition involved in relations of various kinds and
about kinds of players of those roles in those relations.

These semantic rules can only be adhered to and verified when the
nature of the related things and the roles they play are known. The
nature of some thing is expressed by the category or kind to which
the thing belongs. The relation between some thing and such a
category or kind is called a classification relation. Therefore, the
related things and the roles shall be classified explicitly by the kinds
of things and kinds of roles respectively in order to record the nature
of the things.

An expression in a language L is semantically correct when each
thing (object) that is related to another thing in a syntactic structure
is of a kind that complies with the allowed kind of role player that is
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defined for the kind of role that is by definition involved in the
relation of the specified kind.

For example, assume that the definition of language L is extended
with the semantic rule (constraint) that a kind of relation that is
denoted by the phrase <is author of> by definition involves a first
role of the kind ‘author’ and a second role of the kind ‘written” and
that the role ‘author’ may be played by an individual thing of the
kind ‘person’ whereas the role ‘written’ may be played by a thing
that is a qualitative document. Then the above expression John <is
author of> Paris can be semantically verified. If Paris is classified as
a city, then the verification will report that the expression is
semantically incorrect, because city is not a subtype of document.

3.6 Semantic principles

Semantic modeling is based on a number of principles. The main
ones are described below. These principles are derived from the
theory that is developed in the book ‘Formalized Natural Languages’
[Ref. 1].

Semantic principle 1: Elementary binary ideas

Every idea can be decomposed into one or more elementary binary
ideas. This holds also for second order* ideas as well as for higher
order ideas (ideas in which more than two things play a role), which
can also be composed of a collection of elementary binary ideas.

Semantic principle 2: Elementary binary relations

An elementary or second order idea can be expressed by and
unambiguously interpreted in a known context from the meaning of
an expression in the form of a relation between two things (a binary
relation) and one or two explicit classifications of that relation.
These classifications shall relate the relation with an earlier defined
(standardized) kind of relation.

4 First order ideas, such as ‘John walks’, are always expressed in Gellish
as binary relations. For example as John <is involved in> or <is performer
of> walking.
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Semantic principle 3: Ideas and intentions

Communication requires the expression of an idea together with the
expression of a communicative intention for that idea.

Semantic principle 4: Expression of context — main idea and
contextual facts

The interpretation of an idea requires not only expression of the idea
as such, but also information about the context in which the idea is
expressed. That contextual information requires that each main idea
is accompanied by the expressions of a number of contextual facts.

Because of the above principles, each line in an Expression
table contains the expression of one “main” atomic idea and
various contextual facts.

Semantic principle 5: Unique identifiers

An idea is represented by a relation between unique identifiers
(UIDs), which are representatives of things themselves, and not
between names of things. The reason for that is that names of things
are ambiguous, because of the phenomenon of synonyms,
homonyms, codes, abbreviations, translations, etc. The related things
as well as the relations and both their kinds are therefore represented
in the formalized language by UIDs.

Semantic principle 6: Taxonomy of concepts

Each concept (including also kinds of relations) shall be defined as a
subtype of another (supertype) concept.

The principles 5 and 6 together make that each idea is
classified by a kind of relation that is a subtype of ‘relation’
(UID 2850).

Semantic principle 7: Kinds of relations

The definition of the formalized language shall include all the
semantics that is necessary for the unambiguous interpretation of
expressions, which includes kinds of relations. In other words,
semantic expressions can be interpreted by a computer in an
unambiguous way when the meaning of kinds of relations, such as
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<is classified as> and <is a kind of> as well as the meaning of the
other concepts, such as ‘pump’ and ‘capacity’, are denoted by a
unique identifier (UID) and are predefined in an electronic
taxonomic dictionary (the Lexicon of the formalized language).

Semantic principle 8: Extensibility

The semantic language shall be extensible dynamically with the
addition of new concepts, including also new kinds of relations, by
adding specialization relations, which incorporate the new concepts
in the taxonomy.

With such extension capabilities it is possible that individual objects
are even classified by new concepts that do not yet exist in the
taxonomic dictionary. For example, the individual object P-1 can be
classified as a bicycle pump, by also adding a definition of the
concept bicycle pump as an ad-hoc extension of the taxonomic
dictionary. This makes that a receiver system can unambiguously
interpret even such kinds of ideas.

3.7 Correct formalized language expressions

A formalized language comprises a collection of formalized
language expressions, presented in a Gellish Expression Format or
an equivalent format. Correct formalized language expressions are
expressions that comply with the following rules and guidelines.

Rule 1: Each expression of a main idea relates only individual things
and/or kinds of things (concepts or classes) that are:

- Either selected from the formalized language dictionary,
or are

- Properly defined subtypes of those concepts,
or are

- Individual things that are properly classified by those kinds
of things or their subtypes (via individual classification
relations),

whereas the used individual things and kinds of things are
related by individual relations that are classified by kinds of
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relations (relation types) that are also selected from the
formalized language dictionary.

Rule 2: A subtype of a concept is properly defined if the definition
satisfies the requirements that are expressed in chapter 9,
which describes how a formalized language dictionary can be
developed and extended.

Rule 3: An individual thing is properly classified if it has at least one
classification relation with a kind of thing that is selected
from the formalized language dictionary or its subtypes.

Rule 4: Any relation shall relate things that play roles of kinds that
are required by the kind of relation that classifies the relation
and that are defined in the Upper Ontology section of the
Dictionary.

Example 1: assume that A is a performer of B. This implies
that A shall be a physical object, because the ‘is a performer
of” kind of relation requires a first role (performer) that can
only be played by a physical object. N.B. The second role
(performed) is a role that can only be played by an
occurrence. So B must be an occurrence.

Example 2: assume that C is a kind of D. This implies that C
is a concept, because the <is a kind of> relation requires a
first role that is a subtype, which can only be played by a
concept (or subtype of concept).

Rule 5: A relation between an aspect and a number may be classified
by a scale, in which case the qualitative scale (unit of
measure) shall be selected from the formalized language
dictionary or from an extension that is defined in correct
Formal English.

Rule 6: Concepts and individual things shall have UIDs in the
correct range and names of them (being terms or phrases to
denote them) shall only be used in expressions when they are
allocated in a defining statement (classification or
specialization relation) or in an alias relation (or one of its
subtypes, such as a synonym relation).
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3.8 Expression of meaning

Meaning can be expressed in various natural languages. That is done
in expressions or sentences that should satisfy the rules of the
language. Such an expression or sentence consists of components
(‘things’) that are denoted by terms and that are arranged in a
linguistic structure. Therefore, an expression or sentence can be
regarded as a relation that involves (relates) one or more related
‘things’, whereas each ‘thing’ has its own role in the relation, which
role determines its position in the structure.

relation-X

[ thing-1 leays|—<role-1

Figure 4, Generic expression or sentence

Meaning can also be expressed in formalized languages.
Formalization language such as into Formal English or Formal
Dutch (Formeel Nederlands) is based on a standardization of the
structure for expressions and sentences and on the sole use of
explicitly defined concepts and defined individual things as elements
in the expression. This mean that expressions should use either
concepts from a formal dictionary or should be defined by a
language user conform the rules of the formalized language.

A generally usable formalized language should be an open language,
which means that it should include a mechanism to define new
concepts ‘on the fly’ and to add those concepts to the language and
immediately use them. Gellish Formal English is such an open
formalized language.

The standardized structure of expressions enables to present
expressions in tabular form, whereas such tables are suitable for
databases as well as exchange messages. Formal English can thus
use a single generic Expression table that is suitable for containing
any collection of relations that represents any expression or sentence
that fits a fundamental semantic pattern as discussed above. Figure 4

67



illustrates those structures, whereas Table 9 illustrates how those
structures can be represented in tabular form. Table 9 shows the core
of an Expression table, filled with an example of the expression of a
higher order (5™ order) relation. It also illustrates that an individual
relation (relation-X) need to be classified explicitly in order to
enable proper interpretation.

Left hand Elementary Right hand
Left hand kind of . : kind of Right hand
kind of relation
role role
thing-1 player plays role of kind-1 in | involver relation-X
thing-2 player plays role of kind-2 in | involver relation-X
thing-3 player plays role of kind-3 in | involver relation-X
thing-4 player plays role of kind-4 in | involver relation-X
thing-5 player plays role of kind-5in | involver relation-X
relation-X | classified is classified as a classifier |kind of relation
Y

Table 9, Tabular representation of a relation

For binary relations it is possible to simplify the tabular expression
by combining the two lines and the classification line in one row in
the same table (without loss of explicit meaning). Table 10 is an
Expression table in which the first row shows in general how a
binary relation is expressed, and the second row provides an
example of a binary relation.

Left Left hand Kind of relation Right hand Right
hand | Kkind of role kind of role hand
thing-1 | role ofkind-1 | kind of relation Y role of kind-2 thing-2
thing-1 part is a part of whole thing-2

Table 10, Tabular representation of a binary relation

Note that the kind of relation on the second row in Table 10 is
denoted by a phrase <is a part of>, which phrase represents a
composition relation.

The definition of a kind of relation specifies the kinds of roles that
are required for such a relation as well as the allowed kinds of role
players. For example the definition of a composition relation
includes that it requires two roles of different kinds: a part and a
whole, whereas the definition also includes that each role may be
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played by any individual thing. Such definitions of kinds of relations
therefore enable that for classified relation it becomes possible that
the kinds of roles can be derived from the definition of the kinds of
relations. Because of that the kinds of roles do not need to be
repeated for every usage of a kind of relation.

Binary relations

Thus the definitions of kinds of relations include the definitions of
the kinds of roles. This fact makes it possible that the representation
of binary relations can be further simplified by eliminating the
explicit kinds of roles. Table 11 is an Expression table in which the
first row shows a simplified way of expressing a binary relation in
general, and the second row provides an example of a simplified
expression of a binary relation.

Right hand
Left hand Ifeft hand Kind of relation kind of |Right hand
kind of role
role
thing-1 kind of relation Y thing-2
thing-1 is a part of thing-2

Table 11, Tabular representation of a binary relation with
implied roles

The definition of kinds of relations also include the specification of
the allowed kinds of role players. This fact enables software to
verify whether the related things (or their classifiers) satisfy the
requirements for role players (using the taxonomy hierarchy). In that
way the software can verify whether an expression is semantically
allowed.

The above illustrates why a basic assumption of Formal English is
that meaning can be expressed as a collection of relations between
things.
To provide sufficient information for a correct interpretation of such
a collection of relations it is required that is explicitly specified
o For each relation it is explicitly specified of which defined kind of
relation it is, and
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o For each related thing it is explicitly specified of which defined
kind it is, and

o For each role that is played by a related thing it is explicitly
specified of which defined kind it is.

Furthermore, such a collection of relations shall consist of a
minimum number of relations of particular kinds. Requirements for
collections of relations are further described in the documentation of
the semantic patterns that are discussed in the next chapter. Finally,
each relation requires the explicit expression of a context. Such a
context can be expressed as a collection of ‘contextual facts’. Those
kinds of contextual facts are defined in par. 13.4.
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4 Universal semantic patterns

This chapter is about universal semantic patterns for the expression
of ideas of any kind. The structures specify what is minimally
required to be expressed in order to enable interpretation of the
meaning of basic units of communication. This minimum comprises
the expression main ideas and the expression of the context of the
expressions. The semantic patterns for the expression of main ideas
are discussed in this chapter. The expression of context is discussed
in chapter 13.

The semantic patterns are natural language independent, although
the terms that may be arranged in those structures are taken from
natural languages.

4.1 Expressions of ideas by binary relations

The way in which meaning is modeled in a semantic model builds
on the principle that semantic expressions are idea oriented (or
relation oriented although it may be implemented in an object
oriented database). Knowledge as well as information about
individual things is modeled as expressions of ideas.

Expressions of ideas are composed of relations of particular kinds
between related things, each of which playing a role of a particular
kind in the relation.

2850
relation

|
4 !

higher order or 5936
binary relation variable order relation

Figure 5, Arity of relations

A relation in principle can relate any number of related things (role
players), each with its own role of a particular kind in the relation.
The number of roles (and role players) is called the rank or ‘arity’ of
the relation. For many kinds of relations their rank or ‘arity’ is fixed,
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but some relations have a variable arity. Relations with a variable
arity are for example interactions of multiple things in activities and
processes, because the number of things that participate may be
increasing or decreasing during the activity or process. Figure 5
illustrates that kinds of relations can be distinguished by their arity.

An example of an expression (or sentence) that is modeled by one
higher order relation, thus with multiple roles and thus multiple role
players, is given in Figure 6.

{ thing-1 leays|—<role-1

Figure 6, Higher order relation (with rank 5)

relation-X

Such a relation-X can be expressed in tabular form as in Table 12:

thing-1 plays role-1 in relation-X
thing-2 plays role-2 in relation-X
thing-3 plays role-3 in relation-X
thing-4 plays role-4 in relation-X
thing-5 plays role-5 in relation-X

Table 12, Tabular form of a higher order relation

This illustrates that relations of any rank n can be expressed by a
collection of n elementary expressions, each of which consisting of
two elementary (level 1) binary relations. The general form of each
of the elementary expressions is given in Figure 7.

1 2

Figure 7, Roles and role players in a relation
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The same content can be expressed by an inverse expression as is
illustrated in Figure 8.

2 1

Figure 8, Inverse generic expression by two elementary relations

Relation 1 and relation 2 in the elementary expression and the
inverse elementary expression are the same relations, although they
are denoted by different terms or phrases. Those differences are
caused by the natural language conventions in case of a difference in
reading direction. For a semantic model this reading direction is of
secondary importance and semantically such different terms and
phrases can be regarded as equivalent.

Figure 7 and Figure 8 illustrate the position of roles and role players
in a semantic model.

Table 13 expresses in a generalized tabular form that each of the
above elementary expression is composed of two elementary level 1
binary relations.

1. relation-X involves role-1
2. role-1 is played by player-1

Table 13, Generic elementary relations (level 1)

The two elementary relations specify how a relation is related to a
role of a role player and how such a role is related to a role player.

For example, a particular project can be represented by a higher
order relation (Project-X), which involves various roles, one role of
being the manager and several other roles of being a participant. The
fact that somebody is the manager of the project can be expressed by
an elementary relation as follows:

Project-X involves  role-1 isplayed by John
Whereas in this expression role-1 is classified as follows:

role-1 is classified as a manager.
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The model of Figure 7 and

can be simplified, while maintaining the semantic richness. This can

be done by using an equivalent afomic level 2 kind of relation
between the role player and the relation. Such a level 2 kind of
relation is only equivalent when it is defined such that it implies by
definition the existence of a role and its classification, as well as the
two elementary relations (‘involves’ and ‘is played by’) in which the
role is involved. The general form of a phrase that denotes such a
level 2 relation is <is playing a role of kind-1 in>. This results in
expressions at level 2, which have as general form:

Player-1 is playing a role of kind-1 in  relation-X
In natural languages we shorten such phrases, while maintaining
their meaning, by simply saying for example:

John is manager of project-1 (level 2)
The explicitly modeled definition of such a level 2 kind of relation

consists basically of six statements. Table 14 presents a pattern for
such a definition.

Name of left Name of kind of relation Name of right | Definition of left
hand object hand object hand object
relation type-1 has by derf;l)rllét;(m as first role of kind-1

has by definition as

role of kind-2
second role a

relation type-1

role of kind-1 is (defined as) a kind of role is a role that....
role of kind-2 | is (defined as) a kind of role is a role that....
role of kind-1 can be played by a kind-1
role of kind-2 can be played by a kind-2

Table 14, Pattern for the definition of a kind of relation

An example of the definition of the <is manager of> relation is:
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is manager of |has by definition as first role a managed

is manager of | has by definition as second role a | manager

managed is (defined as) a kind of role is a role
that....

manager is (defined as) a kind of role is arole
that....

managed can be played by a activity

manager can be played by a person

Table 15, Example of a definition of a kind of relation

Based on this definition a computer should be able to deduce from
expression (2) that John plays a role as manager in project-1.
Furthermore, when John is classified as a man or as a person and
Project-X is classified as a project or as an activity, then a computer
should be able to verify whether the role players are of the correct
type. This means that the computer can perform a verification of the
semantic correctness of such expressions.

Thus in summary: relations with any number of involvements of role
players with their roles of particular kinds can be expressed in a
semantic model as a collection of elementary binary relations (level
1). This makes that any relation (binary as well as a variable order or
higher order relations) can be represented by a collection of
elementary binary relations. Each elementary binary relation
expresses that a related thing plays a particular role in the relation.
Thus there are as many elementary binary relations as there are roles
played in a relation. This makes that (collections of) elementary
binary relations are a sufficient basis for the expression of any kind
of idea.

Furthermore, pairs of elementary binary relations can be replaced by
atomic binary relations (level 2) that are defined by the explicit
definition of implied kinds of roles. Each atomic binary relation
specifies the involvement of one thing in the relation. This simplifies
the expressions and enables to represent higher order and variable
order relations by a collection of binary relations.

Using binary relations also for the expression of variable and higher
order relations enabled the development of a standard universal
Expression table that is suitable for the recording of any expression
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in Formal English. Each Expression table has the same structure
(table column definition). That universal structure is defined in
chapter 15.

The expression of any idea in a semantic model follows one of the
two fundamental universal semantic patterns: one pattern for ideas
that represents information about individual things and another
pattern for ideas that represents knowledge or general requirements
or definitions. Both patterns are explained below.

4.2 Individual things and kinds of things

There is an essential difference between kinds of things and
individual things. Individual things typically have a location in time
and space. They include not only individual physical objects in the
real world, but also their individual aspects (facets), individual
occurrences and individual relations as well as individual realistic
(and unrealistic) imaginary things. Kinds of things, also called
concepts (or classes of things), are abstract categories that can be
used to classify things using criteria for inclusion or exclusion that
define the concepts.

To enable computer interpretation it is required that a user of the
language defines each new individual thing by at least two actions:

o Representing the individual thing uniquely in the formalized
language by allocating a UID conform the rules for allocating UIDs
and by denoting it by a name.

o Specifying at least one explicit classification relation between the
UID and a UID of a properly defined kind of thing (concept or
qualitative aspect, also called a value) that is defined in a formal
taxonomic dictionary.

4.2.1 Classification relations

Such a classification relation adds (the definition of) the individual
thing to the vocabulary of Formal English and the statement about
the classification should therefore be communicated to other parties
when information about that individual thing is exchanged.
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Thus, a classification relation indicates that something is an
individual thing that is classified by the classifying concept or
by that qualitative aspect. For example,

P-1 is classifiedasa  pump
h-1 is classified as a height

Note that in addition to classifying individual things it is also
possible to classify kinds, as will be discussed later.

4.2.2 Specialization and qualitative subtyping

Each new user defined kind of thing (or concept) shall also be added
to the vocabulary of Formal English. This shall be done by
allocating a UID conform the rules and by relating it to at least one
other UID of a properly defined concept by a specialization relation
or by one of its subtype kinds of relations, such as a qualification
relation (denoted by the phrase <is a qualitative subtype of> or <is a
type of>.

A specialization relation indicates that the defined object is a
kind of thing that is a subtype of the related supertype concept.
The specialization relation is typically denoted by the phrase <is
a kind of> or <is a specialization of>. For example,

thermometer is a kind of  meter
repairing isakind of  activity

A qualification relation indicates that the defined thing is a type
of thing or is a qualitative aspect (also called a value) that is a
qualitative or quantitative subtype of an aspect. A qualification
relation is typically denoted by the phrase <is a qualitative
subtype of> or <is a type of>. For example, a particular number
and color can be defined as follows:

3.141592 is a qualitative subtype of = number
red is a qualitative subtype of  color

Whereas a type of physical object can be defined as follows:
M6 bolt  is a type of bolt
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The use of these types of relations between new defined concepts
and the standard Formal English concepts, together with an optional
textual description, are required to define the meaning of new user
defined concepts.

For example, Table 16 is an Expression table that states that my
bicycle pump, called P-1, is defined by a classification relation.

54 2 101 43 1 60 3 15 201 65
Lang (UID of | Name |Intention | UID |UID of| Name of | UID of | Name of | Partial
uage left of left of |kind of| kind of right right definition

hand hand idea [relation| relation | hand hand
object | object object | object
English| 101 P-1 |assertion| 201 | 1225 is 102 | bicycle
classified pump
asa
English| 102 |bicycle |assertion| 202 | 1146 | is akind [130206| pump that is
pump of intended to
inflate
bicycle
tires.

Table 16, Description of User Objects in an Expression table.

Assuming that the concept bicycle pump is not present in the
taxonomic dictionary, it is added as a user defined concept. This is
done by representing it by a UID (102) and by using the
specialization relation <is a kind of> to relate it to the existing
concept ‘pump’. If the concept bicycle pump would have been
available in the dictionary, the second line would be superfluous and
the UID should have been taken from the dictionary.

Each line in an Expression table denotes a ‘main atomic idea’,
represented by a ‘UID of idea’, and includes an expression of that
‘main atomic idea’ (shortly called ’main idea’), together with a
number of contextual facts. The main idea on the first line in Table
16 has UID 201. It denotes the ‘assertion’ that P-1 is classified as a
bicycle pump. That ‘idea’ is communicated as an assertion (the
intention of the expression). Basically, the idea is expressed as a
relation of kind 1225 (a classification relation) between object 101

and object 102. The following contextual facts are shown in Table
16:

o The fact that the expression is in English
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o The fact that 101 is called P-1

o The fact that the expression is communicated with the intention of
being an assertion

o The fact that kind of relation 1225 is called ‘is classified as a’ (in
English)

o EFEtc.

So, an expression is a representation of an atomic idea, or more
precise: of a proposition about an atomic fact in a context, whereas
with a atomic idea is meant: something that is the case or might be
the case.

The semantics of a line in an Expression table is defined by the
kinds of the relations between the columns in the Expression table.
The relations between the columns in the table define the main idea
and the contextual facts on the line. This is further discussed in par.
13 and 13.4.3.

For example, line 1 in Table 16 expresses the following ideas (in
English):

1. User object 101 is an individual object with the name “P-1".

The fact that the object is an individual thing is inferred from
the kind of relation <is classified as a>, because a
classification relation of this kind is defined as being a
relation between an individual thing and a kind of thing. This
can be inferred from a Gellish formalized language
dictionary, which also contains the language definition,
because the upper ontology section of that dictionary
contains two relations (with UIDs 1.003.840 and 1.003.573
that express the ideas that a classification relation requires
two roles, (1) a “classified individual thing” and (2) a
“classifier of an individual thing”. It also contains two other
relations that express that the classified role can be played by
an individual thing and the classifier role can be played by a
kind of thing (a class).
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There is ‘main atomic idea’ with UID 201 that is expressed
as a relation between object 101 and object 102.

The idea with UID 201 is classified by 1225, being a
standard classification relation concept, found in a formal
dictionary. This defines the meaning of the main atomic idea,
being in this case that idea 201 is qualified as a classification
relation.

Relation type 1225 is denoted as <is classified as a>.

Note that this denotation is already specified in a Gellish
formalized language dictionary and therefore the kind of
relation name is semantically superfluous in a formalized
English expression. However, the name is useful for human
readability of the expression.

. User object 102 is a kind of thing and has the name “bicycle

pump”.

It is a general rule in formal English that a name is formally
allocated to an object only at the left hand side on a line
where the object is defined by a classification, a
specialization or a qualification relation, or on a line where
the name is defined as an alias (synonym, abbreviation, etc.)
or as a translation of an existing object name. Therefore, the
fact that object 102 is called “bicycle pump” is formally
specified on the next line in the above example Expression
table and is referred to on this line only (a verification of
consistency between such multiple usage of names is
recommended to be done by software).

Line 2 is required to ensure that the right hand term of line 1 is a
defined thing. Line 2 in Table 16 defines similar ideas as in line 1.
Note the following ideas:

1.

User Object 102 is a kind of thing (class) with the name
“bicycle pump”.

The fact that it is a kind of thing was already concluded from
the kind of relation in line 1, but can also be concluded from
the kind of relation on line 2 (see below)
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2. User Object 102 is a specialization of the existing Gellish
UID 130.206 with the name “pump”. From a Gellish
formalized language dictionary it can be inferred that the
specialization relation is a relation with two roles: a subtype
and a supertype, each of which is played by a kind of thing
So, both the left hand object and the right hand object is a
kind of thing, which is consistent with the fact that the right
hand object of line 1 is a kind of thing.

3. User Object 102 has an additional relation with the textual
definition in column 4, which specifies in natural language
text in what respect a bicycle pump distinguishes itself from
the general concept of a pump and from its ‘brother’ types of
pumps.

Any other idea can be described in Formal English by usage of other
kinds of relations. A large variety of available standard kinds of
relations are defined in the upper ontology section of a Gellish
formalized language dictionary.

4.3 Expression of ideas about individual things

In this paragraph we give a semantic analysis of expressions of ideas
about individual things. We start with a statement about how such
ideas are expressed in semantic models:

In a semantic model any idea that represents information
about an individual thing is expressed by a relation of a
particular kind together with a specification of the related
things and the roles that they play in the relation.

An example of a statement about an idea that is represented by a
single binary relation is:

assertion: the Eiffel tower <is located in> Paris

Note: Conventional linguistics treat such an expression (sentence) as a
'model of (seven) words', whereas a semantic model treats the
expression as a model of (three) concepts. A semantic model is not a
model of words, but a model of concepts. Therefore, the phrase 'is
located in' as a whole is used as a name of a kind of relation. The
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individual words in the phrase are irrelevant, which is opposed to
conventional linguistic analysis of natural languages.

In the above example expression, the assertion that the Eiffel Tower
is located in Paris is expressed by a location relation that implies two
roles. The first one is a role of ‘being located’. This role is played by
the Eiffel Tower. The second one is a role of ‘locator’, which role is
played by Paris. This is graphically depicted in Figure 9.

1 2

location relation-1 [0 mf‘i':slt"f;:S < being located 0 is played by —>| Eiffel Tower
1 2

locationrelation-1 P ;:\;ilr\:jsr;z > locator 0 is played by —'| Paris

Figure 9, Example relation with two roles and two role players

Thus, such an idea is expressed by two elementary expressions.
Each consisting of two (level 1) elementary relations: an
involvement relation and an ‘is played by’ relation.

The meaning of an expression is provided through the specification
of the nature of each of the individual components of the expression.
Those natures are provided by the definitions of the kinds of things
that classify the individual things (and not through the names of the
individual things). Therefore it is a requirement that each individual
thing is explicitly classified by at least one kind of thing, whereas
that classifier shall be defined in the dictionary of the formalized
language.

Thus, in order to capture the meaning of an expression, so that a
software application can interpret the meaning, it is required to add
classification relations that classify the role players, the roles and the
relation. For example, in addition to the expressions in Table 12 we
should add:

The Eiffel Tower is classified as a tower
Role-1 is classifiedasa  being located
Relation-1 is classified as a is located at

(or ‘location relation’)

Note that the individual role players typically have a name, whereas
their (individual) roles and relations have no name, because their
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classification is sufficient for the interpretation of the meaning of
expressions.

The combination of level 1 relations and these classification
relations in one model results in a fundamental universal semantic
pattern comprising five binary relations that are required for
expressing the meaning of an idea about an individual thing. That
structure is illustrated in Figure 10.

kind of thing Kind of role kind of relation
(concept) (concept) (concept)

IS classified as a

is classified as a

is classified as a

O @

any individual | | (something) (ofs'g::;hing isarolein | [
thing (O-1) has role in relation) (relation)

Figure 10, Universal semantic pattern for the expression of ideas
about individual things

The five binary relations in such a pattern are:
o The classification of the relation (2)

And for every role in the relation there are four elementary relations,
which are:

o The assertion that the relation requires a role (5)
o The classification of that role (6)
o The assertion that the role is played by an individual thing (4)

o The classification of that individual thing (3)

The semantic pattern of Figure 10 illustrates that each idea about
individual things can be expressed as a classified relation (1)
between the involved classified individual things, whereas each
individual thing plays a particular classified role in that relation.
According to the pattern, the relation between an individual thing
and its role as well as the relation between that role and the relation
are expressed by elementary (level 1) relations. This can also be
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expressed by inverse phrases for those relations. The inverse for <is
played by> is <is player of> and the inverse of <is involving> is <is
involved in>. Then the expression of the role of the Eiffel tower in
the relation (1) becomes:

4  The Eiffel tower is player of role-1
5 role-1 is a role in relation-1

A similar collection of elementary relations can be created for the
role of Paris in this relation.

For a correct interpretation of the expression the related objects, the
roles as well as the relation need to be classified. This results in the
following expressions of ideas:

3 The Eiffel tower is classified asa tower
4  role-1 is classified asa  located (object)
2 relation-1 is classified as a  is located in (relation)

The above universal semantic pattern is usually not directly applied,
because it can be simplified while still keeping its semantic
expression richness. There are two relevant simplifications.

4.3.1 Pattern for relations between individual things

As described in paragraph 4.1 the above pattern of Figure 10 can be
simplified for the expression of ideas that require higher order
relations, such as correlations and models of occurrences. This can
be done by replacing the two binary elementary level 1 relations (4)
and (5) by one binary atomic level 2 relation (7), which is classified
by a kind of level 2 relation (8), which leaves the roles implicit. This
pattern is illustrated in Figure 11.
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kind of involvement kind of relation
relation (level 2) (level 3)

i O S
is classified as a is classified as a is classified as a

a

g D
any individual O TAvelvementirelation relation-1
thing (O;) (Occ-1)

Figure 11, Simplified universal semantic pattern for higher
order relations between individual things

Kind of thing
(concept)

The kinds of involvement relations at level 2, as depicted in Figure
11, are defined such that they have by definition implied roles of
particular kinds. One of those kinds of roles is the kind of role that is
used to classify role-1 in Figure 10.

A tabular representation of this pattern is given in Table 17.

UID of | Name of left Name of Name of right
idea hand object kind of relation hand object
4

Object-1 is involved (as...) in Occ-1
2 Occ-1 is classified as a LStile gl
occurrence
3 Object-1 is classified as a Lt P e
object

Table 17, Pattern for higher order relations between individual
things

For example, assume that the pattern of Figure 10 is used to express
that Object-1 (O-1) is involved as performer in higher order
Relation-1 (representing Occ-1). This means that role-1 in Figure 10
is classified (6) as ‘performer’. We can then simplify the pattern by
replacing the two elementary relations (4) and (5) by one atomic
relation (7), which is classified (8) as a <is performer of> kind of
relation. The <is performer of> kind of relation is defined as a
relation that requires by definition a first role as ‘performer’.
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Definitions of such kinds of relations will be expressed by using the
second semantic pattern, as will be discussed in paragraph 4.4. For
the time being it is sufficient to assume that the definition of such a
kind of relation defines which kinds of roles are by definition
involved (and which kinds of role players can play such roles). For
example, the kind of relation <is performer of> is defined by the
requirement to have as its first role a <performer> kind of role and as
its second role a <performed> kind of role, whereas the definition also
specifies which kinds of things can play roles of such kinds. Thus, the
kinds of roles are already defined by the definition of the kind of
relation, which makes the classification (6) of the individual roles
superfluous.

A semantic interpretation of an expression that uses such a kind of
level 2 relation can thus derive the kinds of roles from the definition
of the kind of relation and therefore it is neither necessary to make
the individual roles explicit, nor to classify them.

Figure 11 presents the simplified universal semantic pattern for
expression of relations of any arity. This structure comprises one
classification relation that classifies the (higher order) relation (the
occurrence) (2) and three relations for every involved role player (3),
(7) and (8). This semantic pattern is especially useful for the
expression of unary, higher order, or variable order relations, such as
occurrences, correlations and if-then-else relations.

When applied for the specification of an activity, this structure leads
to new atomic kind of relations to distinguish the players of the
various roles. For example:

7 John is performer of act-1

3 John is classified as a inspector
Whereas

2 act-1 is classified as a inspecting (relation)
And similarly:

7 P-101 is subject of act-1

3 P-101 is classified as a pump
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The kinds of roles, performer and subject, in the inspection activity
can be inferred from the definition of the kinds of relations by which
the atomic relations (7) are classified.

Thus, higher order relations, variable order relations and unary
relations are expressed as collections of one or more of this kind of
classified atomic binary relations.

Unary relations

Semantic modeling usually distinguishes between unary, binary and
higher order relations. A unary relation is an expression of an idea in
which only one object is involved. A binary relation is a relation
between two objects, etc.

A typical example of the expression of a unary idea is a statement
that expresses that a person is performing an activity of a particular
kind. For example: ‘John is inspecting’. The semantic model of this
example is given above.

However, this atomic relation is not the complete representation of
what is occurring. The complete idea would also specify which
object is being inspected and possibly also e.g. which tools are used
during the inspection. This illustrates that unary relations are
usually, if not always, only atomic relations and thus they are
incomplete expressions of higher order ideas. Unary relations are
typically relations between an object and an activity or process,
whereas the object plays a role as performer or as subject.

4.3.2 Pattern for binary relations between individual things

Many ideas appear to be ideas that can be expressed as binary
relations, being units of communication in which exactly two things
are involved, each with their own role of a particular kind. Such
binary relations can be expressed by using a further simplified
semantic pattern. This simplification can be achieved because such
ideas require always two atomic level 2 relations. Such pairs of
atomic relations can be replaced by one molecular level 3 relation.
This simplification results in the simplified universal semantic
pattern of Figure 12.
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Kind of thing kind of relation
(concept)

(concept)

classifier

is classified as a

any individual thing p : ——
(A-1: A-2) J< relation-1

Figure 12, Simplified universal semantic pattern for binary
relations between individual things

Figure 12 presents graphically a pattern for the expression of binary
ideas about individual things. Such an idea is expressed as a binary
relation between ‘any individual thing’ and another individual thing.
That second individual thing is represented in Figure 12 by the same
box, called 'any individual thing', as the first individual thing. Thus
the expression of a complete molecular binary idea comprises a
specification of two role players and a binary relation at level 3, each
with its classification.

Each level 3 kind of binary relation according to the pattern of
Figure 12 is defined such that it requires by definition two roles of
kinds that are the kinds of roles that classify two roles played by two
role players of the pattern of Figure 10.

The pattern of Figure 12 does not define for each of the individual
role players which of the two roles it actually plays. The definition
of the kind of relation only specifies the kind of role player that may
play the first role and the kind of the one that may play the second
role. In natural languages the role player that plays the first role and
the one that plays the second role is determined by the grammar of
the language. However, those grammatical conventions are natural
language dependent. According to the English language grammar
the roles are determined by the phrase that denotes the kind of
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relation and the corresponding sequence of the role players from left
to right. The syntax of the formalized language therefore defines
which role player is specified to play the first and which one the
second role. This is further discussed in chapter 13.

For example, a part-whole relation is a binary relation, with two
involved individual things, one with a role as a part and the other
with a role as a whole. Those kinds of roles would be explicit when
we would use the pattern of Figure 10. According to the pattern of
Figure 11 the model would be simplified as:

P-1 has a role as part in assembly relation-1
W-1 has a role as whole in assembly relation-1

To enable to directly relate the two involved things, P-1 and W-1,
we need to define and use a molecular kind of binary relation at
level 3 that implies by definition the two atomic involvement
relations at level 2 and the four elementary relations and the two
roles with their classification at level 1.

For example, we can define a molecular level 3 kind of relation
called <is a part of>, which by definition requires two roles, the first
one classified as a ‘part’ and the second one classified as a ‘whole’.
This enables to express a binary part-whole relation as follows:

P-1 isapartof W-1

The semantics of such a binary expression is included in the
definition of the kind of relation, which includes an explicit
specification of the kinds of roles that are played by the related role
players and the explicit specification of which kinds of things may
play roles of such kinds. The latter specification can be used to
semantically verify whether the classifiers of the role players (e.g.
the classifiers of P-1 and W-1) comply with the allowed kinds of
role players.

The definition of such a binary relation uses the same pattern of
Table 14 that was developed for the simplification from level 1 into

89



level 2. For example, by using that pattern, the definition of a part-
whole relation becomes as is presented in Table 18:

Name of left | Name of kind of Name of right | Definition of
hand object |relation hand object left hand object
. has by definition as
is a part of first role a part
is a part of has by definition as whole

second role a
part is defined as a kind of |role is a role that....
whole is defined as a kind of |role is a role that....
part can be played by a individual thing
whole can be played by a individual thing

Table 18, Definition of a part-whole relation between individual
things

Figure 12 uses one box to represent two related things in a binary
relation, just as Figure 11 uses one box to represent any number of
related things in a higher order relation. For clarity an alternative
representation of the pattern of Figure 12 is given in Figure 13, in
which each role player is represented by its own box.

kind of thing kind of relation kind of thing
(concept) (concept) (concept)
f

1
is classified as a

Is classified as a Is classified asa
classified

O Do O
Role player-1 o relation-1 Role player-2
(A-1) (R-1) (A-2)

Figure 13, Alternative presentation of the simplified universal
semantic pattern for binary relations between individual things

The relation R-1 (1) and its classification (2) can be expressed on
one line. Therefore, a general pattern for the expression of binary
ideas about individual things becomes:
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Name of Name of relation type Name of
left hand object right hand object
1 A-1 @ is relatedto A-2

3A A-1 is classified as a kind (1)
3B A-2 is classified as a kind (2)

Table 19, Pattern for expressing binary ideas
about individual things

For example, assume we want the computer to interpret the
expression of a statement about a binary idea, such as:

101 the Eiffel tower is located in Paris

This expression shows only three components: the first and last one,
the Eiffel tower and Paris, are both individual things that are
represented by the boxes Role player-1 and Role player-2 in Figure
13. The phrase <is located in> represents a kind of relation that
classifies (2) the individual relation (1). Thus that kind of relation is
an example of a concept at the upper side of the figure. For a
complete interpretation it is required that a computer also knows of
what kind the two related individual things are. The individual
things are defined by their explicit classification relations (3A and
3B). For example this results inthe following additional
expressions:

102 the Eiffel tower is classified as a building
103 Paris is classified as a city

The roles that are played by the Eiffel tower and Paris are individual
roles. The kinds of roles are always the same for all relations of the
same kind. Therefore, the kinds of roles that are played in a relation
of a particular kind are defined as part of the definition of the kind of
relation. This implies that the classification relations for the roles
can be deduced from the definition of the kind of relation and don't
need to be included explicitly in each expression for binary ideas
about individual things. In the above example those roles are
'located' and 'locator' respectively.
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The explicit classification of the related individual things enable a
computer to verify the semantic correctness of the expressions,
because the definition of the kind of relations define which kinds of
things may play roles of the required kind. In this example, a
computer can conclude that both related thing are individual things,
because the definition of a classification relation specifies that the
first role is played by an individual thing. Furthermore, the
definition of a relation, such as the <is located in> relation, specifies
that both role players should be physical objects. This means that the
classifiers, being building and city, should both be subtypes of
physical object. Whether that semantic requirement is satisfied
should be verified via the relations in the taxonomic dictionary of
the formalized language.

4.4 Expression of ideas about kinds of things

Any idea that represents knowledge about a kind of things or a
general requirement or a concept definition is expressed in a
semantic model as a relation between kinds of things. To enable the
interpretation of the expression it is insufficient to only record the
relation itself, because it is required to include additional relations
that define the used concepts.

A concept definition model includes at least one specialization
relation with a direct supertype of the concept and a description of
the relation(s) that specify an additional constraint with regard to the
supertype concept, which constraint distinguishes the subtype from
other subtypes of the same supertype. The specialization relation
expresses that the defined concept is a proper subtype of that
supertype concept. Such a specialization relation means that the
defined concept inherits the definition and all other ideas about the
supertype concept, including its possible roles in relations (except
for its names). The specification of the distinguishing constraint may
be specified as free text and/or may be defined by one or more ideas
about the defined concept that are by definition the case. The
specialization relation is further discussed in par. 9.1

Ideas that represent knowledge include knowledge about what can
be the case as well as knowledge about what is by definition the

92



case. General requirements include states of affairs that shall be the
case in a particular context. Each of such a category of ideas is
expressed by using its own kind of relation.

For example, expressions of knowledge about what is by definition
the case are:

(any) house has by definition as part a roof
flat roof is (by definition) a specialization of  roof

The ideas about what is by definition the case only define what the
essential characteristics of such a kind of thing is. This means that a
thing that does not comply with that essertion is not a thing of that
kind. Thus, this definition states that something without a roof is not
a (well formed) house (yet).

An example of a general requirement is that in a particular context it
may be specified as a requirement that:

(any) house shall have as part a flat roof

For a correct interpretation of the meaning of 'house', 'roof' and the
various kinds of relations (relation types) shall be defined in the
formal dictionary.

Thus, because of their definition, each kind of thing has at least one
specialization relation with a supertype kind of thing. This means
that a subtype-supertype hierarchy of relations between kinds of
things is resulting. In other words the concepts are arranged in a
Taxonomy hierarchy. This also holds for the kinds of relations. This
has additional benefits, because each kind of relation is defined in
such a way that it constrains the related objects to objects of
particular kinds. For example, only physical objects can be located
in physical objects. Therefore, the <is located in> relation requires
that each located thing and each locator thing is a physical object. To
enable the verification of that constraint it is required that concepts
such as 'building' and 'city', etc. all are defined in the Dictionary as
subtypes of the concept 'physical object'. Only then the subtype-
supertype hierarchy of concepts (the Taxonomy) enables automated
verification whether an expression is semantically allowed.

93



These general requirements on expressions are the cause that a
universal semantic pattern is discovered that specifies what is
minimally required for the expression of the meaning of a unit of
communication about kinds of things. That pattern is presented in

Figure 14.
N
&upertype> <gupertype> <Supertyps>
13 16— 12
is a specialization of is a specialization of is a specialization of
<{subtype> subtype

g g _ 15 ko) 11
kind of thing CanihaySRitole (klfnd Oftrhqle ISy definition | | in4 of relation
o1 something i
asa inrelation) aroleina

Figure 14, Universal semantic pattern for the expression of ideas
about kinds of things

This pattern has similarity with the universal pattern for expressions
about individual things as presented in Figure 10, but the concepts
and the kinds of relations are different. The semantic pattern of
Figure 14 illustrates how ideas that represents knowledge or general
requirements about a kind of thing are expressed. A complete
expression comprises:

o A kind of relation (11) and its definition as specialization of a
supertype kind of relation (12)

And for each involved kind of thing it comprises:

o A pair of elementary relations (14) and (15) that the particular kind
of thing is involved in a role of a particular kind

o Two a specialization relations, one to define the nature of the kind
of thing (13) and another to define the kind of role (16).

This pattern is used for the definition of kinds of relations. The
definition of a kind of relation includes:

o A specification of the kinds of roles that are by definition played in
such a kind of relation.

o For each kind of role a specification of the kinds of things that can
be player of such a kind of role.
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The pattern for the definition of a kind of relation with a
specification of one of its kinds of roles becomes in tabular form as
is presented in Table 20.

UID Name of Name of kind of Name of

of left hand object relation right hand object
idea

12 kind of relation-1 is a kind of kind of relation-2

17 kind of relation-1  has by definition kind of role-1
as first role a

18 kind of role-1 1s a kind of kind of role-2
16 kind of role-1 can be played by kind-1

a
13 kind-1 1s a kind of kind-2

Table 20, Patter for the definition of kinds of relations

Each component in an expression is a kind of thing or concept
that shall be included in the dictionary of the formalized language;
together with its definition (i.e. it shall be included in a Domain
Dictionary or in a proprietary extension). As a proper definition of a
concept should be computer interpretable, the definition of a concept
shall be modeled and may not be just human readable free text.

4.4.1 Pattern for relations between kinds of things

Constraints can be specified on kinds of roles that are played by
particular kinds of role players. The specification of such constraints
requires making such kinds of roles explicit. When such constraints
are not applicable on roles in higher order relations, then for proper
interpretation it is sufficient to know the kind of role that can be
deducted from the definition of the kind of relation or that is
inherited from the definition of a kind of relation that is higher in the
taxonomy hierarchy. Therefore for most applications it is not
required to make the kind of role explicit. This enables to simplify
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the semantic pattern for higher order relations as presented in Figure

15.
kind of thing
<supertype> <supertype> supertype
18>— 12
is a specialization of is a specialization of is a specialization of

subtype subtype

- 1z k' f ) kd f relati
Kind of thing (O~ kind of role-1 : s S kind of role-2 Ind.or relatian
involvement relation {higher order)

Figure 15, Simplified universal semantic pattern for higher
order relations between kinds of things

A tabular representation of this pattern is presented in Table 21.

th].) Name of left Name of kind Name of right
idea hand object of relation hand object
. can be involved kind of
14 kind-1 (asa...)ina occurrence- 1
can be involved . . kind of involvement
15 (asa...)ina is a kind of in an occurrence
kind of . . kind of
12 occurrence-1 is a kind of occurrence-2
13 kind-1 1s a kind of kind-3

Table 21, Pattern for higher order relations between kinds of
things

There are many kinds of involvement relation and kinds of
occurrences defined in the Dictionary as will be discussed later.
They are not only kinds of relation for expressing knowledge, such
as <can be a performer of a> kind of relation, but also for the
expression of requirements and definitions, such as <shall be
performer of a> and <is by definition a performer of a>.
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4.4.2 Pattern for binary relations between kinds of things

For binary relations between kinds of things both kinds of roles can
be derived from the definition of the kind of binary relation. This
enables a further simplification of the semantic pattern as follows:

[ kind of thing
rd A

{ supertype > <supertype >

kind of relation

Figure 16, Simplified universal semantic pattern for binary
relations between kinds of things

Thus a general expression of a binary relation between two kinds of
things becomes:

o Some kind of thing plays a kind of role in a kind of relation in
which another kind of role is involved that is played by another kind
of thing,

In other words:

o Something of a particular kind plays a role of a particular kind in a
relation of a particular kind in which another role of a particular kind
is involved that is played by another thing of a particular kind.

The box at the left hand corner of Figure 16 represents two different
related kinds of things. For clarity an alternative representation of
the pattern of Figure 16 is given in Figure 13, in which each related
kind of thing is represented by its own box.
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{supertype> <supertype> <supertype>
; ' OB

| is a specialization of I isa specialization of I| is a specialization of

Subtype Subfype
s (AD—© s
kind of thing-1 (O< kind of role-1 kind of relation kind of role-2 kind of thing-2

Figure 17, Alternative presentation of the simplified universal
semantic pattern for binary relations between kinds of things

A tabular representation of this pattern is presented in Table 22.

U()Ii!) Name of left Name of kind of Name of right
. hand object relation hand object
idea

11 kind-1 can be related to a kind-2

12 can be related to a 1s a kind of binary relafuon

between kinds

13A kind-1 1s a kind of kind-3

13b kind-2 1s a kind of kind-4

Table 22, Pattern for binary relations between kinds of things

The various kinds of relations that are defined in the Dictionary are
discussed in chapter 9 and 10. Those kinds of relations include kinds
of relations to express knowledge, requirements and definitions.

4.5 Integrated semantic patterns

The correct interpretation of expressions about individual things in a
formalized language always requires the classification of the
individual things, as well as the definition of the classifying concepts
by means a taxonomic dictionary of concepts. Therefore it requires
the combination of the semantic pattern for the expression of ideas
about individual things and the semantic pattern for the expression
of ideas about kinds of things. This combination of the universal
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semantic patterns of Figure 10 and Figure 14 is presented in Figure

18.
kind of thing
(concept)

supertype supertype supertype

13 16— 12D
is a specialization of I iSa specialization of I IS a specialization of
Subtype> <Silbtype>
—— T
kind of thing can have a role 0 s by definition Kkind of relation
(concept) asa (of something aroleina
in reIaAtlun)

9

is classified as a
classified

& O | (C— S— e
any individual something) isarolein :
thing (O-1) has role (relation) [j | refation-1

Figure 18, Integrated universal semantic pattern

kind of role

is classified as a

role-1
(of something
inrelation)

The lower part of the pattern is universally applicable for the
expression of information about individual things; the upper part is
applicable for the expression of definitions of concepts as well as for
the expression of knowledge and requirements.

The simplified version of the integrated pattern for higher order
relations, such as occurrences, correlations and conditional
consequence (if-then) relations is given in Figure 19.
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Figure 19, Simplified integrated semantic pattern
for higher order relations

The simplified version of the integrated pattern for binary relations

is given in Figure 20.
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Figure 20, Simplified integrated semantic pattern
for binary relations

Note that the term ‘simplified’ indicates that the roles are implicit.
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4.6 Bootstrapping the formal definitions

Defining concepts in a formalized language requires the use of
already pre-defined concepts. Avoiding circular definitions implies
that an initial list of ‘bootstrapping’ concepts should be available
that form the basis for the definition of further concepts. Semantic
analysis of formalized language definition resulted in the discovery
that formal expressions follow the above described universal
semantic patterns. Furthermore it was concluded that the patterns
that are required for concept definitions and the allocation of terms
to concepts requires only the bootstrapping kinds of relations as
given in Table 23.

Name of kind of relation Phrase .that denotes the kind
of relation

specialization relation is a kind of

by definition having a first role has by definition as first role a

by definition having a second role | has by definition as second role a

possibly playing a role can play a role as a

naming relation is called

Table 23, Bootstrapping kinds of relations

The bootstrapping kinds of relations themselves can be defined in
the same way as defining other concepts, although their definition
models make use of the bootstrapping kinds of relations themselves.

Phrases that denote kinds of relations have a reading direction that
specifies which role player is located at the left hand side of the
phrase and which one is located at the right hand side. To enable the
use of inverse phrases and thus for distinguishing phrases from
phrases that require an inverse position of the role players it is
necessary to distinguish to ways of naming (two subtypes of the
naming relation). For practical reasons and for remaining close to
the natural language way of denoting synonyms, the following two
kinds of relations are added to the list of bootstrapping relations

synonymy relation is a synonym of
inverse synonymy relation is an inverse of

101



The only additional required concept is the top concept of the
taxonomy of concepts, called ‘anything’ and possibly its counterpart
‘nothing’. The concept ‘anything’ can be defined as ‘that what can
be thought of.

On the basis of these bootstrapping concepts it is possible to build
the whole language defining ontology. These bootstrapping kinds of
relations are therefore the only kinds of relations that are used in the
upper ontology to define the basic concepts of the formalized
language.
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5 Vocabulary and identification

In natural language things are usually denoted by names, but also by
other terms, such as abbreviations, codes, translations, drawing
numbers, document titles, phrases, symbols, etc. Those names, etc.
form the vocabulary of the language. In practice the same thing is
often denoted by multiple different terms. Each denotation typically
originated or is based in some language community (also called
‘speech community’), although it may be used also outside its
‘native’ language community. Sometimes things are denoted by
concatenated terms, such as addresses or concatenated codes and
sometimes things are denoted indirectly, whereas they may be
nameless. Finally in systems and on the Internet, things are denoted
by identifiers that include resource names and paths to directories.
This chapter discusses those various kinds of denotations and thus it
discusses the vocabulary of Formal English.

5.1 UIDs, names and synonyms

In a formalized language everything needs an unambiguous
identification, but there is also a requirement for multiple denotation
of something in different contexts. For example, things may be
denoted by a term or name as well as by a synonym and by a code
and by different names in other languages. On the other hand the
same term may be a denotation for different things, when used in
different contexts, thus used as a homonym. These are reasons to
distinguish between the representation of something ‘itself’ and
various terms to denote it.

5.1.1 Unique identification

Everything is represented in a formalized language by a ‘unique
identifier’ (UID). Although there is a subset of the formalized
language defined that allows for the use of ‘names’ as identifiers,
but in that subset the use of homonyms is not allowed.

Note: Without homonyms the (preferred) terms can be used as
UlIDs. However, such terms do not uniquely identify things,
because of the existence of synonyms, abbreviations, codes,
translations, etc. Therefore in such cases software should verify for
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every term whether there are possibly relations in which (explicitly
declared) synonyms, etc. are specified and whether there are
relations specified for such aliases.

A unique UID in Gellish forms an unambiguous identification of a
unique identity within the Gellish family of formalized languages. A
UID is in fact an arbitrary symbol that is meaningless and thus does
not contain any information about the thing it represents. A UID is
also natural language independent. Thus a UID that is used in
Formal English represents the same thing as that UID when used in
Formal Dutch, etc. A UID is not a key in the IT sense, because a
UID does not represent a combination of aspects that together
uniquely identify something.

External identifiers from coding systems other than Gellish that
identify things that are also known within the Gellish language are
normally treated as alias names or codes in Gellish, whereas the
coding system has a role as language community. Other external
identifiers may be used as Gellish identifiers provided that they
satisfy specific conditions. This is further discussed in paragraph
5.2.

Everything shall have a UID; as it represents the identity of
something in the formalized language. Something without a UID is
not represented and cannot be talked about. A UID may not change
during the life of the thing it represents. There may not be another
thing that has the same UID. This is independent of the contexts in
which the UID is used.

The UID of anything that is standard in Gellish is a natural number
(a positive integer), except for strings, numbers and user defined
identifiers. Strings are unique in themselves, numbers are prefixed
by a hash character (#) as is explained in detail in appendix A and
user defined identifiers are (preferrably natural numbers) preceded
by a prefix that is chosen by that user, followed by a colon (:). This
enables software to automatically generate new UIDs provided that
the allowed range is specified. The range of UIDs below
3.000.000.000 is reserved. UIDs above that number are free, as
described below. Within the Formal English language definition the
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reserved range is subdivided in the following ranges (the upper
values are not included in the ranges):

1-100:

Unknowns, optionally preceded by the prefix ‘unkn:’
This range is reserved for the identification of objects (or
collections of objects) that are ‘unknowns’. Thus, the use
of a UID in this range means that the object is unknown.
Typically such unknowns are used in Formal English
Queries in which the identity of such a thing or things is
requested. For example, the UID of the left hand object
in the following question is 1 with the name ‘what’. That
‘object’ or collection of objects stands for an unknown
collection of pumps (with their real UlIDs) as will
become known in the answer to the question.

UID of
left hand
object

Name of left
hand object

UID of
kind of
relation

Name of kind of
relation

UID of
right hand
object

Name of
right hand
object

1

what 1225 is classified as a 130206

pump

100-1000

Testing.
This range is reserved for testing and demonstration
purposes.

1000-15.000.000

Language definition.

This range is reserved for the definition of concepts in
the Taxonomic Dictionary. UIDs in this range are
allocated by the formalized language manager.

dd:yyyymmdd:hh:mm:ss.decimal

Date-Time.

This notation has a prefix dd: followed by a date. For
example the UID 20111126 shall be interpreted as 2011
11 26, or 26" of November 2011. If the two digits for the
day are missing, then a whole month period is meant. If
the two digits for the month are also missing, then a
whole year is meant. For example: 201111 indicates the
month November in the year 2011. Optionally the date is
followed by a colon (:) that is followed by an hour,
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optionally followed by a colon and a minute, optionally
followed by a colon and a number that represents a
second and optionally a dot (.) and a decimal part of a
second. For example, UID dd:20111126:12:1:1.5
denotes 1 minute and 1.5 second past noon at the above
date.

The relation between UID and number is described in chapter Fout:
Bron van verwijzing niet gevonden, Fout: Bron van verwijzing niet
gevonden.

Non-numeric identifiers
User defined UIDs should be preceded by a prefix,
except when they are allocated a numeric range by the
formalized language manager, provided that they obey
the rules as described in par. 5.2.

Names and phrases

Names and phrases (terms) are character strings. Such a
character string is a unique sequence of characters in its
own right and therefore does not need an additional UID.
Note that a character string may have various roles to
denote different things (homonyms). Therefore a
character string that is used as a name or phrase is not a
Gellish UID.

Literals

It is a widely used practice to allow for values that are free text
strings, typically denoted as ‘literals’. However, the concept of
literal is not a semantic concept and it does not bear any meaning.
Typically a ‘literal’ is expressed in a particular language and can
only be interpreted by a human who understands that language. In
Gellish formalized languages, all concepts should be a defined
meaning, so that most ‘literals’ should be defined as qualitative
subtypes of generic concepts. For example, instead of a literal for
denoting a color such as ‘red’, the concept ‘red’ shall have a UID
and shall be defined as a qualitative subtype of the concept ‘color’.

Uniqueness of UIDs
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The formalized language is defined such that each concept (whether
an individual or a kind) is only represented by only one UID. Thus,
if something is searched for, and its UID is found, then in principle
there is no need to continue searching in order to find another UID
that represents the same thing. Thus, in principle it is not allowed
that different UIDs represent the same thing in the formalized
language. Therefore, any two different UIDs will always represent
different things, except for possible errors in the language definition.
However, for non-numeric identifiers and identifiers with prefixes,
the responsibility for allocating UIDs is distributed to various
independent organizations; and thus the responsibility for
maintaining consistency and for avoiding that multiple identifiers
identify the same thing is the responsibility of the organization that
uses such UlIDs. Therefore, it is recommended that organization
reserve one or more ranges for their proprietary concepts and verify
the uniqueness of those concepts and coordinate the addition of new
concepts with the formalized language manager.

Examples of UIDs
Standard Gellish concepts have for example the following UIDs:
1.225 is classified as a
130.206 pump
551.564 capacity (mass flow rate)
927.838 5.0
570.449 dm3/s

User defined things of organizations that have provided with a
reserved range might have for example the following UIDs:

40.000.001 P-6501

40.000.002 capacity of P-6501

101.001.001 valve type A

501.001.002 nominal diameter of valve type
A

601.001.003 idea 1501001002

107



Examples of non-numeric UIDs

Examples of external UIDs that may be used as UIDs in Gellish are
CAS registration numbers for chemicals. For example the Gellish
UID that identifies 1,1,2-trichloroethane is CAS:99-00-5.

Notes:

Gellish UID | Name in English

CAS:99-00-5 1,1,2-trichloroethane

CAS:7732-18-5 water

1. Usage of external UIDs does not guarantee unambiguous

UIDs. For example, water also has a Gellish UID (430266).
Thus two things that are classified using different UIDs are
not recognized as being of the same kind, unless there is an
explicit statement that states that they identify the same
thing and software ensures its implications. For example:
CAS:7732-18-5 <is the same thing as> 430266

Systems such as the CAS Registry have their own purpose
and conventions. For example, the CAS registration
numbers identify pure chemical substances or molecules.
Gellish allows for a classification as water, while the purity
is not 100%.

. CAS only distinguishes substances on their chemical

structure and thus it does not distinguish between e.g. liquid
water, ice, and water vapor or steam, because they are all
chemically identical, whereas the Gellish dictionary
includes subtypes of water depending on their state, even
including concepts such as high pressure steam, saturated
steam, etc.

Sameness

When the uniqueness of UIDs cannot be expected, there may be a
need to specify that two different UIDs nevertheless represent the
same thing, even when their names are different.
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5935
binaryrelation

is 5980|
_Cthe same thing as

Figure 21, Sameness of something represented by two UIDs

Figure 21 illustrates that there is a standard kind of relation defined
that specifies that two different UIDs represent the same thing, even
if the names are different An example of the use of such an
expression is:

Intention | UID | UID of | Name of | Name of | UID ofright | Name of
of |lefthand| left hand kind of hand object right
idea | object object relation hand
object
statement| 201 | 20001 name-1 | is the same 31002 name-2
thing as

Note that the above kind of relation is not applicable in the standard
Gellish formalized languages, but only in extended Gellish in which
it is not guarantee that UIDs are really unique identifiers of things.

5.1.2 Naming and description

The various denotations of something (denotations by terms such as
names, codes and abbreviations) and their descriptions or definitions
may vary in various language communities and in various
languages.

5935
binaryrelation

LC is 5980
the same thing as

Figure 22, Naming, description and definition

Therefore, as illustrated in Figure 22, multiple description relations
are required to relate the multiple terms and other text strings to the
UlDs, whereas the kind of relation indicates whether a text string is
a (has a role as a) name, description of definition. Each term is
allocated with a basis in its own ‘native’ language community. A
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language community can be either a discipline, or an organization,
an application system in which particular codes are used, etc.

[materials engineering]

A

|is unigue in the context of|

is called —)[ water b— is qualified as —)[ English ]
43026610
is called —)[ H.O b’ is qualified as —)[international]

Q

|is unique in the context of|

Figure 23, Naming of things

Figure 23 illustrates that one concept can be denoted by various
terms in different language communities (that act as naming
contexts). For example, the concept represented in Formal English
by UID 430266, is denoted in English as water and is denoted
internationally in chemistry as H,O. Thus the term water belongs to
the English vocabulary and the term H,O belongs to an international
vocabulary. Both terms are allocated in Formal English to concept
430266, the first one in a materials engineering language community
context, the second one in a chemistry language community context.

Note that in general it is a rule that, if a term is allocated to a concept
in a particular language community, then that term is the ‘preferred
term’ for that concept in that language community.

It is a uniqueness rule in Formal English that within a combination
of a language and a language community context a concept shall be
named by only one term. (In principle multiple unique terms are
allowed, but then it would be unclear which term is the preferred
term). In other words, within a language community in a particular
language something is uniquely identified by the (then preferred)
term. Thus the combination [language, language community, term]
is a ‘unique key’ for anything in Formal English.
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The allocation of names (terms) to concepts, including their
language and language communities can be expressed in a simplified
form as a table as follows:

UID | Language |Language community Name of Name of thing
kind of
relation
43026 | English materials engineering is called water
6
43026 | Internationa |chemistry is called H20
6 1

Table 24, Naming table with synonyms

The columns in a Naming table have relations that represent a
meaning. The kinds of relations that classify the relations between
the cells in the columns are illustrated in Figure 24.

f

] 511

is called

is unique?’ 76
in context of

uiD
(Anything)

hasasname

Language

Language
community

Name

~n

5020

]

is qualified as
Figure 24, Relations between columns in a Naming table

These multi-naming possibilities enable companies to act as
language communities within Formal English. Thus they can use
Formal English and nevertheless use their own terminology to
denote things for concepts that are known to others under different
names. They can even add their proprietary concepts and allocate
terms that have a specific meaning that is only valid within that
company. Large companies and governments sometimes have their
own terminology management organized to avoid ambiguity.
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5.1.3 Aliases and synonyms

If aliases are used, then it is desired to specify whether an alias term
is a synonym or an abbreviation or a code, etc. for another term for
the same thing. To enable specifying the relation between an alias
term and a base term there are a large number of subtypes of the
alias relation defined that can be used to specify the precise role of a
term in relation to another term. Most of those subtypes are
presented in Figure 25.

5935
binaryrelation

1980
is an alias of

—]

1981
e
is a synonym of hasas 5053

isan 71982 page number

abbreviation of hasas 5054
1983 sheet number

is acodefor hasas 5055
1986 revisioncode

is aninverse of hasas 5064

4691 stream humber
is a translation of hasas 5065

5122 locationcode
is along name of

isa 5123
serialnumber of

5350
is a title of

5351
is a subtitle of

5352

The same namein two is an identifier of
—_

differentlanguage communities is 5522

5523
is a symbol for

1984
is a nounform of

isan 71985
active form of

]

Figure 25, Subtypes of the alias relation
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Some codes or terms are alternative denotations (alias terms) for
things that have already another term as its preferred name in some
language community (context). For example, a technical drawing is
typically primarily denoted by a drawing identifier, such as
‘T-123.456 Sheet 3 Rev 2’. However, such a drawing usually also
has a title and may have a subtitle. Both title and subtitle are
alternative ‘names’ for the drawing that may be used for searching
the drawing. Some systems may record even the sheet number of a
drawing as a separate item (field in a database). The drawing may
also be denoted by a page number, when being part of a volume. All
such denotations denote the same drawing which is represented by a
UID. For example, assume that the UID is 123. Then these
alternative denotations are expressed as follows:

UID of Name of left hand Name of kind of UID of Name of
left hand | object relation right hand | right hand
object object object

123 T-123.456 Sheet 3 Rev 2 |is qualified as a 490196 drawing
123 T-123.456 Sheet 3 Rev 2 | has as title 123 A-1 layout
123 T-123.456 Sheet 3 Rev 2 | has as sheet number | 123 3

Table 25, Alternative denotations for a drawing

Note that all the alternative denotations are treated as names of the
same UID. When a denoted object is recorded as being a part of a
larger whole, then the larger whole acts as a natural context within
which a name of a part should be interpreted. Therefore, alternative
denotations usually do not need language community contexts. In
the above example, T-123.456 might be recorded as a (name of) a
collection of sheets and revisions of sheets that acts as a (language
community) context for the sheet number. Nevertheless, it is
possible to add an explicit language community in a formalized
English expression, especially when inverse relations of the above
ones are used (further details.

Occurrences, such as activities, processes and events can be denoted
by nouns, as well as by other forms, such as active forms. For
example, the terms activity, acting and action are aliases, although
one is a noun and the other is a verb’.

5 This illustrates that the concepts ‘noun’ and ‘verb’ don’t denote a
semantic distinction, but only a grammatical distinction. The same holds
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5.1.4 Mapping of organization’s terminology

A mapping between terms used in a particular organization and
terms in the Formal Dictionary is a mapping between different
language communities. The organization should use existing UIDs
from the Dictionary for existing concepts even when the names are
different.

For existing concepts a mapping table thus uses expressions with the
same UID at the left hand side as at the right hand side, but with
different terms. This is illustrated in Table 26.

UID of Language Name of Name of kind of UID of Name of
left hand | Language comngllllm% left hand relation right hand| right hand
object ty object object object
430266 English medical aqua is a synonym of | 430266 water
430266 English Company X water is the same as 430266 water
430266 German mgterla} s Wasser is a translation of | 430266 water

engineering
430266 | International chemistry H20 is a code for 430266 water
Table 26, Mapping table

A mapping table uses primarily the <is a synonym of> relation to
denote that a term that is used in the company (or other language
community) is a synonym of a term that is used in the Dictionary for
the same concept. The fact that it is the same concept is indicated
that the same UID is used on the left hand side as on the right hand
side of the expression.

If the two terms are identical, then the <is the same as> relation can
be used. It denotes that the name is identical to an already allocated
name for a particular concept, but the language communities are
different. Thus in a particular language community, such as
Company X, the same term is used as preferred term as the term that
is specified for another language community. In principle this
statement is superfluous, but for completeness it is recommended to
include such equalities.

for the concepts ‘subject’ and ‘object’, because the same (semantic)
meaning can be expressed in an expression as well as in its inverse
expression, whereas the thing that has a role as subject in an expression has
arole as object in the inverse expression, without a change of meaning.
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Only if a concept or individual thing is not yet included in the
Dictionary, neither the same name, nor under an alias name, then an
organization should introduce a UID for the new thing and then
provide a definition for the new thing. The new things shall be
created as extensions of the Dictionary. How that is done in the
formalized language is described for individual things in par. 8.1.1.
and for kinds of things in par. 9.

5.2 Coding systems and namespaces

There are many organizations and standards in the world that
manage classification systems or coding systems in order to allocate
unique identifiers or codes to widely known concepts and individual
things. If the concepts that are denoted by such identifiers are not
(yet) part of the Gellish language, then those identifiers can be used
in Gellish by adding a prefix followed by a colon (:) to the idetifier
of the organization. For example, the ISO 3166-1 standard numeric
code for countries allocates numeric codes to all countries in the
world. For example, the number 840 is allocated to the USA. Thus,
the USA can be identified in Gellish e.g. by the identifier ISO1366-
1:840.

However, countries, such as the USA, are already included in the
Gellish dictionary. The USA has UID 2700347. The use of both as
UIDs would mean that the two identifiers would not be recognized
as the same country. In order to harmonize that, such third party uids
can be included in Gellish formalized languages by treating the
codes as synonym codes (‘names’) for things that may have also
other names, whereas they are identified by their Gellish UID. The
coding system is typically indicated as the language community in
which the code find its home base.

Thus users of the formalized language may include namespaces of
other organizations and may define some or all of them as synonyms
of names of things that are already in the dictionary. Such
namespaces are specified in the same way as mapping tables, as was
described in par. 5.1.4.

For example, the alternative denotation of the USA by code 840 can
be included in the Gellish dictionary as follows:
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Language UID of | Name of Name of UID of Name of right hand

community | left hand | left hand kind of right object
object object relation hand
object

I1SO 3166-1 | 2700347 840 is a code for | 2700347 | United States of America

Table 27, Example code in a coding system

Note that in Table 27 the UID of the left hand and right hand are
identical and identify the country within the formalized language.
The ISO 3166-1 standard thus forms a ‘language community’ of its
users in which the OID codes have a meaning and can be
interpreted. Therefore ‘ISO 3166-1° is used as the language
community

Furthermore, ISO 9834 standardized the joint ISO, IEC and ITU-T
defined Object Identifier’s (OID’s) in principle for any concept in
the world. Those OID’s are recorded in a repository http://www.oid-
info.com/index.htm that acts as a reference for concepts defined and
managed by a hierarchy of ‘Registration Authorities’. For example,
the United States of America has OID: 2.16.840. In Gellish Formal
English the concept with UID 2700347 and name USA has already a
code name 840, being the code from ISO 3166-1, as mentioned
above. But in addition to that this OID code can be added as another
synonym. This is illustrated in Table 28.

UID of
Language le[;tnl?a(:lfd Name of left T{?::leooff right Name of right hand
community obiect hand object relation hand object
1 object
1SO 9843 | 2700347 | OID:2.16.840 | is a code for | 2700347 |~ United States of
America

Table 28, Coding system synonyms

6 Specifying the OID 2.16.840 as a (synonym) code for UID 2700347
ensures that in Gellish both refer to the same thing. Allowing both codes as
identifiers (UIDs) in Gellish is not acceptable, because it would require a
separate equivalence relation, whereas the possible presence of
equivalence relations has the drawback that it is continuously required to
search for possible equivalences. On the other hand Gellish allows for
adding non-mapped things in a free number range above 1.000.000.000.
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http://www.oid-info.com/index.htm
http://www.oid-info.com/index.htm

The ISO 9834 standard thus created a ‘language community’ in
which the OID codes have a meaning and can be interpreted.
Therefore ‘ISO 9834 should be used as the language community for
OID’s.

An alternative way, although not recommended, is to use the foreign
code with a prefix as UID in Gellish and define that they denote the
same object as follows:

Name of | Name of UID of
Language | UID of left . right Name of right hand
T R left hand | Kkind of .
community| hand object . . hand object
object relation .
object
ISO 9843 | OID:2.16.840 | USA |is the same as| 2700347 | United States of America

A consequence of this alternative is that software should be
programmed such that these are two nodes that the semantic network
which relations should be superposed.

An example of an ISO standard for coding systems for kinds of
things is ISO 81346. Its part 2 defines the general code structure for
individual things and ISO 81346-10 contains names for kinds of
things and their codes in Power Plants and ISO 81346-12 (draft)
contains names for kinds of functions (processes) and physical
objects and their codes in Buildings and Building Services. For
example, the concept sewerage system has code TT.

The process to relate other identifiers and codes to Formal English
concepts is similar as for individual things.

Note that identifiers from coding systems may also be used as
Gellish UIDs without being declared identical things to existing
Gellish UIDs. For a proper functioning of Gellish based systems it is
then important that those external concepts are arranged in the
taxonomy of Gellish concepts. Therefore they should be defined as
being subtypes of existing Gellish concepts. Thus the definition of
such concepts should obey the same rules as are applicable for
defining new concepts in Gellish and its taxonomic dictionary.
Those rules are further discussed in Ref. 2.
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5.3 Homonyms

A homonym is a name that is used in different contexts to denote
different concepts (represented by different UIDs). Homonyms can
be allowed in a formalized language, provided that the allocation of
a name to a concept is always defined in a language community
within a language such that it makes the combination (language,
language community, name) a unique and unambiguous
identification of the concept. For example, in English the term
building denotes multiple concepts. Expression Table 29 shows that
(in English) the combination of a language community and a name
enable to distinguish a building activity from a building construction
that is the result of a building activity.

Lanouage UID of |Name of Name of Name of
guast left hand |left hand . . right hand
community . . kind of relation .
object |object object
activity 194173 |building is a specialization of | forming
bu11.d e 40018 | building is a specialization of | construction
engineering

Table 29, Example of a homonym
5.4 Addresses

An address is a name or denotation of an area that acts as a location
where a physical object may reside. There are various kinds of
addresses, such as home address, postal address, telephone address,
e-mail address, etc. This definition of an address shows that
allocating an address to a physical object should be done by relating
a physical object to an area where the physical object is located,
whereas the address is the name of that area. For example, the
allocation of an address may be expressed as a relation between a
house and an area on which the house is built, or the relation
between a person and an area where he resides officially.
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Figure 26, Addresses

Home addresses (visit addresses) are usually allocated and registered
officially by a government agency. They determine the boundaries
of a parcel and allocate a registration number as well as an address.
For example, in The Netherlands, the Kadaster is the registration
authority that allocates the ‘Kadastrale’ registration number to a
parcel; whereas the local government adds a street name and parcel
number within the street. These authorities should ensure that those
numbers and names are unique within the context of the local
community (which behaves as some kind of language community).

Home addresses are often decomposed as text and then form a
concatenated code, but in a semantic model, the area shall be related
to stepwise larger areas, each with its own UID and denotation. For
example, I live on a place (a parcel) which I can give a UID 101.
Assume that the place has registration number 123.456 and is locally
in the street denoted by a number, such as “1°. The parcel is located
within a larger postal area, called ‘2724 VR’. Now the parcel
registration number and zip code are related as is given in Table 30.

Language Name of Name of Name of
community for left | UID | left hand | . . UID |right hand
. . kind of relation A

hand object name object object
Kadaster 101 123.456 | is classified asa | 731.018 | parcel
Zoetermeer 101 1 is an alias for 101 |123.456
government

Zoetermeer 101 1 is a part of 102 [2724 VR
government

Table 30, Parcel registration number and zip code
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Note that the UID is a unique identifier for the area within Formal
English, but the number 1 is only unique within the context of the
postal area.

The parcel is also located in a street in Zoetermeer in The
Netherlands. That can be specified as in Table 31.

idoa:nilllafft for Name of Name of Name of

unty - UID |left hand kind of UID |right hand
left hand object . . g

object relation object

name
Zoetermeer 101 |1 isapartof | 103 |Violiervaart
government
Zoctermeer 103 | Violiervaart is a part of 104 | Zoetermeer
government
geography 104 | Zoetermeer is a part of | 270021 | The Netherlands

Table 31, Geographically composed address

The above examples illustrate how addresses can be modeled
semantically. The language communities illustrate that for coding
systems the base language community is typically the organization
that is responsible for allocating the codes.

5.5 Denotation by code and classification

Sometimes things are not denoted by a name, but they are given a
code or number, which is allocated by an authority that determines
the context for interpretation. Such an authority is the core of a
language community that makes use of the code. Within that
language community such a code, usually in combination with the
classification of the thing, it is unambiguously defined which object
is meant.
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is called 253
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is unique in the context of

Amsterdam
government

Figure 27, Denotation by classification and code in context

In tabular form this is expressed as follows:

UID of UID of
Name of . . Name of
Language left Name of kind of | right .
. left hand . right hand
community | hand . relation hand .
. object . object

object object
Amsterdam 102 253 is classified asa | 45394 | traffic light
government

For example, in many modern cities traffic lights and lamp posts are
coded, often by a number, such as 25.3, being the third traffic light
on road crossing 25 in Amsterdam. This example illustrates that
there are two additional pieces of information required in order to
interpret the code 25.3: firstly ‘Amsterdam government’ is the
language community context for the name, because this particular
code is allocated by the Amsterdam government and secondly
‘traffic light’ is the kind that classifies the individual thing. (We
ignore the fact that the code itself is a concatenation of two codes).

5.6 Nameless things

Sometimes, things have no name, nor a code. They have an identity
and are represented by a UID, but they are nameless. However they
may be indirectly denoted by their relation(s) to other things. For
example, they may be denoted by their classification and/or by the
name of a kind of role which they play and possibly by the name of
the assembly from which they are a component.
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bearing
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is a part of —)[ P-1201 ]

Figure 28, Denotation by classification and composition

Figure 28 illustrates and example of a nameless object identified by
its UID as ‘103°. From its classification relation with a kind of thing
and a composition relation with its higher assembly we can interpret
that it is the driven end bearing of P-1201. Thus it is an individual
thing that is classified as a bearing, which is located at the driven
end (the end of the shaft at the side where a motor drives P-1201)
and that is a part of P-1201. In tabular form this can be presented as:

Intention | UID | Name of Name of UID |[Name of
left hand kind of right hand
object relation object

statement | 103 |Nameless |is classified as a | 130345 | driven end

bearing
statement | 103 |Nameless is a part of 104 |P-1201
statement | 104 |P-1201 is classified as a | 130206 | pump

From the third line it can be interpreted that P-1201 is the tag name
of a pump. We may also interpret that the combination of words
‘driven end bearing’ is a name of a kind of role for a bearing,
because that concept is defined as such in the dictionary and is
widely used in the rotating equipment engineering language
community to classify a bearing in such a position.

Thus, anything needs a unique identifier (UID), but not necessarily a
name, code, etc. In order to know that something is nameless on
purpose, it is a recommended convention for Formalized English to
give nameless things the name ‘Nameless’.
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5.7 Identification on the Internet

On Internet things are typically denoted by Uniform Resource
Identifiers (URIs) as by Uniform Resource Names (URNs) as
described in
http://en.wikipedia.org/wiki/Uniform_resource_identifier. A URN is
a concatenation of three components: the string ‘urn:’, an explicitly
specified namespace that is followed by a colon (:), followed by a
‘character string’ that acts as an identifier. The namespace ‘Gellish’
is explicitly specified as http://www.formalenglish.net/dictionary.
The concept water has a Gellish UID of 430266. Thus in the
namespace ‘Gellish’ the concept water is unambiguously referenced
on the Internet as:

urn:Gellish:430266
When URIs are preferred (as with RDF) this should be replaced by:
http://www.formalenglish.net/dictionary#430266.

Homonyms are distinguished from each other in Gellish by their
language community. Therefore the name for denoting a concept in
an unambiguous way needs to be preceded by a language
community that denotes a domain dictionary, such as ‘materials’ in
the case of water. Thus references to the concept 430266 by one of
its names in English becomes:

urn:Gellish:materials: water

http://www.formalenglish.net/dictionary/materials#water

And as a second example, the United States of America is
unambiguously referenced on the Internet as:

urn:Gellish:2700347

5.8 Descriptions and textual definitions

Terms, such as names, codes, abbreviations and descriptions or
textual definitions are unique by their unique combination of
characters and therefore they are not given separate UIDs in Gellish.
UIDs are only required to represent the things that are denoted by
the terms.
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Definitions may be expressed in a computer interpretable form as
‘definition models’. A definition model of a concept is a network of
relations between the concept and other concepts, each of which
relation is by definition the case, and each of which related concept
is defined as well. Definition models are further discussed in par.
10.1.

5.9 Textual and graphical information and
documents

Text, other than terms (names) and textual definitions, can either be
fully incorporated within a semantic model as a textual object, or it
can be expressed in an external document on a carrier, such as a
paper document or an electronic file, which can be linked to a
semantic model. Before we explain how these two options are
modeled, we need to clarify the relation between text, graphics,
information and documents.

5.9.1 Information versus documents

Physical documents (e.g. on paper) and electronic files are both real
physical objects. The ink and bits are also physical objects. The
content of physical documents and files however (not the physical
ink or bits, but the informative aspect), which is interpreted from the
shapes and patterns, is ‘information’. Such information can be
expressed as text or spoken expressions in natural language or it can
be expressed (modeled) in a formalized language, such as
formalized English.

Qualitative information

The term ‘document’ is ambiguous. In some contexts the term
document denotes a physical copy, for example in the form of ink on
paper. But more often the term document is used to denote a piece of
information, which may be a single content that is common to
multiple physical copies. To eliminate the ambiguity we will use the
term document then we denote a piece of information, which may
qualify the content of multiple physical documents. For physical
manifestations we will use the term physical document, file or web

page.
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Thus, a particular content (a piece of information, such as
Requirement-5) can be expressed in multiple physical copies and it
may be present even in multiple different formats. For example, the
same piece of information can be expressed on paper as well as in a
Word file (doc format), as well as in pdf format files on various
locations. Thus with ‘a piece of information’, such as ‘Requirement
5’, we do not mean one individual (physical) text, but the common
content that is contained in and is interpreted from each of the
possibly multiple copies of some text. The individual content of each
of the physical copies is qualified by that same common qualitative
content. Therefore, that common ‘same’ content is called
‘qualitative information’. In fact it classifies the content of multiple
copies and therefore it appears to be a (qualitative) kind of
information. That is the reason why it can be stated that
Requirement 5 <is a qualitative (subtype of)> requirement (whereas,
according to the taxonomic dictionary, a requirement is defined as a
subtype of information).

When a piece of information incorporated in a semantic model, then
the complete text can be treated as an object in its own right,
whereas that text remains in natural language and thus is not
expressed in Formal English This implies that the text shall have its
own UID and may have a name or remain nameless.

1706 ( 570007
is a qualitative > tesiiismeit
4685 510425
: ’ —>
is definedas bt \
: : [ 4000
is a requirement
—> concept
L fora 6398 F \

Figure 29, A textual requirement as an object
in a semantic model

Requirement-5

For example, as illustrated in Figure 29, a paragraph in a standards
document may contain requirements about compressors. Each such
requirement is a piece of information (qualitative information) that
should be given a UID and might have a name, such as
‘Requirement 5°. That particular Requirement-5 then has to be
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defined as being a ‘requirement’. The definition of Requirement-5 is
then expressed as follows:

Requirement-5  is a qualitative requirement

The content of such a paragraph (the actual text) defines the
requirement. Therefore that text is specified as the definition of the
requirement. That textual definition is related to the UID of the piece
of information with name Requirement-5 as follows:

Requirement-5 s defined as A compressor shall ...

The paragraph can then be related to the concept about which it
provides information by stating for example

Requirement-5  is a requirement for a compressor

The content (the textual definition) of a paragraph as well as its
definition as being a qualitative requirement can be recorded in an
Expression table (see chapter 15) on the same line. For that purpose
that standard table has a separate column, called ‘Description’.

UID | Name of left | UID of | Name of kind of | UID of | _\2me of -
of hand object | idea relation RHO right hand | Description
LHO object
Requirement . o . A
101 5 1726 | isa qualitative | 970007 | requirement | compressor
shall ...
101 ?eqmremem 5398 |82 reg)‘?fmem 130069 | compressor

Table 32, Piece of information as an object in a semantic model

Thus the example model of Figure 29 can be expressed as is
illustrates in Table 32.

External documents

Information that is expressed in an external document is typically
available in one or more electronic files (copies) in one or more
different formats. For example, the same information can be
available in a Word document (doc-file), as well as in a pdf-file
format. In such a case the content (text) is not provided in the
semantic model itself, but the file is incorporated as an object in the
semantic model and the requirement is related to that file.
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Furthermore, the location of the file (the path to the file in a
directory) and the format of the file may be included in the model.
The model may also include a specification that allows for the
launching of suitable application software to retrieve and display the
content of the file. For example, the above ‘Requirement 5° text may
be stored in two files as ‘Requirement 5.doc’ and as
‘Requirement_5.pdf’. Then the relation between UID 101 and the
two files can be as illustrated in Table 33

UID Name of left hand | Name of kind of | UID of | Name of right hand |Descrip
of . . . .
LHO object relation RHO object tion
101 | Requirement 5 is presented in 102 | Requirement 5.doc
101 | Requirement 5 is presented in 103 | Requirement 5.pdf
102 | Requirement 5.doc is an element of 104 | C:\my documents
103 | Requirement 5.pdf is an element of 105 | www.examples.com
104 | C:\my documents is classified as a [492017 | directory
105 | www.examples.com | is classifiedasa |970274 |url address

Table 33, Information in referred external files

This can be interpreted as a definition of a hyperlink, so that the file
extensions (doc or pdf, etc.) may be sufficient for application
software to determine which software should be launched to retrieve
the file and to display its content when a user activates the hyperlink.
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Figure 30 presents the example for a reference to two external files
that contain different physical expressions of the same qualitative
information.

( ) 1728 870007

is a qualitative [eidien et

4685
is definedas

4886

is presentedin

SEE TR
is an elementof

1227
is an element of

equirement_5.doc O

tequirement_5.pdf O

is a requireme 130069
o 1581 ?OL:’I; 533; compressor
.4

Requirement-5

4896

is presentedin

url address
(web page)

Figure 30, Text stored in external document

Note that the (qualitative) information is presented in (or <is
presented on>) the file, whereas the file is an element in a collection
of files, being either a directory in a file management system, or an
internet address of a “page’ on the Internet.

In the above example, the requirement is applicable for compressors
in general. Other requirements are applicable only to specific
individual things. For example, a (textual) requirement may be
applicable for compressor C-351. For the specification of such a
requirement (slightly) different kind of relation is required as is
shown in Figure 31.

Gro002

5034 1726 information
is a qualitative (documenttype)
2005 . 490089 7227 | [~ collection of
) . information carrier O—{. i . .
is presentedin is an element of information carriers
qualitative 4685

information is defined as

P o TIO0ET
o 12 re‘t'r’e”;gg; —>[ individualthing
5 2 4990
N Isa reqUIrement
| ) fora 5398 concept

Figure 31, Pattern for textual requirements

128



5.9.2 Information about physical objects

The fact that particular information is about a physical object is
typically modeled as a relation between some ‘qualitative
information’ and the physical object.

For example, A P&ID about process unit 1400 with drawing nr
T-123.456 contains information about P-1401. This is modeled as
follows:

T-123.456
T-123.456

P-1401
P&ID

Note that in this example T-123.456 is not an individual copy, but is
the ‘qualitative information’ that is common to all copies of that
drawing. The kind of relation <is defined as a> is a synonym of <is a
qualitative>

contains information about
is defined as a

5.9.3 Location of information in files

The relation between a particular piece of information and an
individual physical file at a particular location on the internet is
modeled as follows:

T-123.456

is presented on

Unit-1400.dwg

Unit-1400.dwg

is an element

http:/www.gellish.net/examples

Unit-1400.dwg

is classified as a

electronic data file

T-123.456

is presented on

Unit-1400.pdf

Unit-1400.pdf

is classified as a

electronic data file

Unit-1400.pdf

is an element of

http:/www.gellish.net/examples

Table 34, Location of information in a file in a directory

This example illustrates that both files are stored at the same
location on the internet.

In a similar way a figure or picture is presented on a document file.
For example:

Picture-1 is presented on/in Report-1.doc

This latter example illustrates that there does not need to be a 1:1
relation between a piece of information and a physical file.

A physical electronic document is usually a blob (a binary large
object) that is a ‘black box’ for the model. In other words the content
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of a document is not interpreted by according to the rules of the
modeling language, unless the document content happens to be in
the form of a computer interpretable language. For example, a
picture (png-file), a pdf-file, a Word document (doc-file) or an Excel
spreadsheet (xIs-file) is intended to be displayed by an application
but (semantically) interpreted only by human beings. Such files are
included in the model by a reference to the blob, as described above.

However, there are exceptions. One exception is when the file
contains an information model that is computer interpretable. An
example of an interpretable information model is an information
model in the form of an Expression table in Excel. Such a document
is an xlIs-file with a spreadsheet that has a predefined tabular
structure with content that complies with the rules of Gellish Formal
English and therefore it can be interpreted by application software.
The content of such a file can be part of the information model in
which the file as a whole is a blob.

5.9.4 Dynamic standard forms & data sheets

Empty data sheets are a kind of standard forms. Just as other
standard forms they consist of predefined text and empty fields in a
particular lay-out. Such empty standard forms can be re-used and
then filled with data, either for display only or the filled-in form can
be treated as a new document.

Sometimes a standard form (or data sheet) is created in spreadsheet
form, such as in Excel (as an xlIs-file). That means that a particular
field on a sheet in a file is reserved for a particular value. This
enables to create ‘dynamic’ standard forms and data sheets, where
the empty or partially filled in form is static, whereas other fields are
dynamically filled by application software with data from the
information model. The static fields are part of the blob that is not
part of the information model. The fields that are intended to be
dynamically filled are related to the information model by relating
the field to one of the related objects in an expression in the
information model that ‘contains’ the value that need to be filled-in.
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6 Categories of kinds of relations

The concept ‘relation’ or ‘relationship’ (2850) is the top of the
taxonomy hierarchy of a large number of standardized kinds of
relations. The hierarchy of kinds of relations has the structure of a
hierarchical network and does not have a pure tree structure, because
some kinds of relations have more than one supertype. Nevertheless,
the explanation below typically follows the branches of a tree
structure.

Formal English intents to enable to make expression about anything.
This means that the language should provide kinds of relations for
expressions about

o individual things

o kinds of things

o collections of individual things
o collections of kinds of things

This is illustrated in Figure 32.

4658 1227

e - T relation between
[ m?m:gual * > r_elc?tl_c;n bfﬂt:\(een —)[ m?L‘i"nd;al } )>—a single individual thing
Doyt il i and a collection

.| collection
of things
O
4748

relation between
collections

collection

of things

The related things are ordered in a taxonomy structure (a subtype-
supertype hierarchy) and the kinds of relations are also arranged in a
taxonomy structure. Figure 33 illustrates the top structure of the
taxonomy of kinds of relations.

4719
relation between
an individual thing and a kind of thing

4719 \lr — M2730
kind relation between kind r_eallou cej fetﬁ_n
of thing kinds of things of thing asingle kind of thing

and a collection

Figure 32, Relations between anything
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is a specialization of anc;?z%upertype kind of thing
is a qualitative |relation between a conceptual kind
subtypeof |and a qualitative kind
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is a model of |and a manufacturer's model

conceptual relations between things of specified kinds

hierarchical relation between kinds of things

canbe... /4698

canhave ...

shall be... / 5735| conceptual requirementfor relations
shall have ... bewe%l}méngs of specified kinds
A

is by definition ... / | by definition relations
has by definition ... |between things of specified kinds

Figure 33, Main categories of kinds of relations

Each kind of relation can be used to classify relations of such kinds.
Kinds of relations are typically denoted in Formal English by
standard phrases and inverse phrases. Those phrases and inverse
phrases have a reading direction that determines the role of the left
hand and right hand object in an expression. The top structure
defines the following categories of kinds of relations.

o Naming and identification relations

These are relations that are suitable for being used to identify
and name anything (individual things as well as kinds of things)
by relating it to a name or identifier.

o Relations between individual things
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These are relations that for the expression of information about
real as well as imaginary individual things.

The phrases that denote these kinds of relations typically begin
with <is..> or with <has...> and do not end with <...a>. For
example: <is a part of> or <has as part>.

Within this category of relations we distinguish between:
o Relations between single individual things

o Relations between a single individual thing and a collection of
individual things

o Relations between collections of individual things
o Relations between individual things and kinds of things.
These are relations for the classification of individual things.

The phrases that denote these kinds of relations typically begin
with <is...> and end with <...a>. For example: <is classified as
a>.

o Relations between kinds of things.

These are relations for the expression of knowledge,
requirements and definitions of things of particular kinds.

This category has two subcategories:

o Hierarchical relations between kinds of things

These are relations that are not self referential, i.e. the
concepts can be used for forming hierarchical networks of
relations without recursion. This means that in such a
hierarchy a related concept has as constraint that it may not
appear more than once in a chain of related concepts.

The phrases that denote these kinds of relations typically
begin with <is a..> and do not end with <...a>, because
they state that something is by definition the case for a
kind. For example: <is a kind of>, which means <is by
definition a subtype of>.

o Conceptual relations between individual things of specified kinds
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O

These are relations that specify things that can be or are the
case for categories of individual things. They do not have
the non-recursivity constraint. Thus the related concepts
may appear more than once in a chain of concepts that uses
a conceptual relation. They specify possibilities in general,
requirements in specific contexts or what is by definition
the case for all things of the specified kinds.

The phrases that denote these kinds of relations typically
begin with

<can be...> or <can have...>,
<shall be...> or <shall have...> or
<is by definition...> or <has by definition...>.
Within this category of relations we distinguish between:
Relations between single kinds of things

Relations between a single kind of thing and a collection of kinds

of things

©)

Relations between collections of kinds of things

Note that for sake of clarity of this document sometimes there are
some details not show in the hierarchies and figures. For example
some kinds of relations have multiple supertypes whereas only one
supertype is shown and there are some intermediate concepts
defined in the upper ontology that are not show.

Each of the above categories is further described in the following
chapters.
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7 Relations between individual things

Individual things are not only real or imaginary physical objects, but
also aspects of physical objects, such as properties, qualities,
abilities, etc. as well as individual relations, activities, processes, etc.
Thus an individual thing can be anything that is distinguished from
something else and that is not a classifier for multiple individual

things.
2850
relation

5935
binary relation is relate-f:thS

A 5936

higher order or
variable orderrelation

relation between individual things
binary relation 4655

between individualthings

higherorderor 5517
O variable order relation
between individualthings

Figure 34, Kinds of relations for relations between
individual things

Figure 34 illustrates the main kinds of relations in the top of the
taxonomy of kinds of relations that are intended for the classification
of relations between individual things. Relations between individual
things can be binary relations or variable order or higher order
relations.

Binary relations

There are many kinds of binary relations between individual things.
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Figure 35, Relations between individual things

The right hand side of Figure 35 presents for example:

o Composition relation (1260) between two physical objects. The
composition relation and its subtypes are further discussed in par. 7.1.

o Connection relation (1487) between two physical objects.
Connections can be rather complicated as various kinds of
connections are possible, including also various kinds of connection
materials. Those subjects are discussed in par. 7.2.

o Possession of aspect relation (4679) between a physical object and
an aspect that is possessed by that physical object (aspects that are
possessed), such as its temperature, color, skill, etc. That kind of
relation has various subtypes as is discussed in par. 7.4.
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o Experience of aspect relations (5058) between a physical object
and an aspect of another physical object (aspects that are
experienced), such as a sensor that senses a temperature of another
object.

o Objectives relations (5115) between a relation or state and a
purpose or objective, such as the reason why an activity exists.

o Involvement relations (4961) between a variable order or higher
order relation and an individual thing that plays a role (is involved) in
that higher order relation, such as person who is a performer of an
activity. The involvement relation (4767) has a number of subtypes
which express the kind of role in which something is involved. Those
subtypes are discussed in par. 7.5.1.

Each of the two things that are related by a binary relation plays a
role of a particular kind.

The kind of relation that is to be used for classification of a
binary relation can usually be found by searching for the
combination of the term <is> or <has> and the name of the
role that one of the related things is playing.

For example, searching for a phrase that denotes a composition
relation between two physical objects can be done in various ways.
For example, using the Gellish Search Engine [Ref. 3] for searching
on the combination of ‘beginning with <is> and including <part>’
will deliver various kinds of relations in which one thing plays a role
of part. Among them is the relation denoted by the phrase <is a part
of> (1260). However, the combination of <has> and <part> will
point to the same relation, via the phrase <has as part> (1260). But it
is also possible to find that relation by searching via the role of the
other role player. Thus the combination of <is> and <whole> will
point to the phrase <is a whole for>, which is an alternative phrase
for (1260).

Higher order relations

States of affairs are typically defined by a collection of coherent
aspects that have a particular value at a particular moment in time
and that may be correlated and dependent on each other. Such states
can be static over time or they can be dynamic, thus changing over
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time, such as occurrences, activities and processes. Static states,
dynamic states, physical and mathematical correlations relate
multiple aspects that are possessed by one or more things. Such a
relation is therefore called a higher order relation.

Higher order relations between individual things are expressed in
Expression tables as a collection of elementary involvement
relations (as described above). This enables that the number of
involved things is flexible and may even vary over time. For
example, the participants in an activity or process may vary over
time, whereas the participation of each participant in the process is
recorded as a separate involvement relation between that participant
and the process.

Constraints on recursivity and incompatible roles

A self referential relation (also called a recursive relation) is a
relation that relates something to itself. Typically relations between
individual things are not recursive, because usually individual things
are not related to themselves. For example, a temporal sequence of
occurrences (<occurs after>, 1388) relation relates an individual
occurrence to another individual occurrence. For example, given that
A-1 and A-2 are individual activities we can specify:

A-1 occurs after A-2

However, when A-1 and A-2 would be the same activity, then the
statement would be incorrect, as something cannot occur after itself.

A constraint that the player of a role of some kind may not also play
a role of another kind is expressed as a constraining relation between
the kinds of roles. The general definition of a self referential kind of
relation and a constraint on its role players is illustrated by the
example in Figure 36.
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Figure 36, Constraint on role players

The definition of <occurs after> specifies that a relation of this kind
requires a first role as a temporal predecessor and a second role as a
temporal successor. Each of those roles is by definition played by an
individual thing, under the constraint that those individual things
must be classified by the concept ‘occurrence’ or one of its subtypes,
and as additional constraint that the two individual occurrences may
not be the same. The latter constraint is a constraint on the allowed
players of the roles of the specified kinds. This constraint can be
modeled explicitly by using a kind of relation that expresses that an
individual thing that plays a role as ‘temporal predecessor’ cannot
simultaneously play a role as ‘temporal successor’ in the same
relation (which is by definition the <occurs after> relation).
Formally this is expressed as:

temporal temporal
predecessor cannot be played by the player of SUCCESSOr

Similar constraints on role players can be expressed in general as:

| kind of role | cannot be played by the player of | kind of role |

7.1 Composition relations

In general individual things are composed of components or parts.
This holds e.g. for physical objects and fluids, systems, spaces,
routes as well as for organizations, occurrences, aspects such as
distances and time, networks, etc. This is opposed to elements that
are combined in a collection. The elements in a collection do not
have roles of different kinds in the collection, apart from possibly
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being arranged in a list sequence. There are various ways in which
things can be (de)composed.

Figure 37 illustrates the various subtypes of composition relations
that enable the expression of various different ways in which wholes
can be decomposed.
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Figure 37, Composition relations

The various kinds of composition relations correlate with the various
ways in which components are related to each other. The kinds of
relations can express:

o A component is assembled in an assembly (1190). This implies
that multiple components are connected, bound or welded together.

o Something is a physical feature of another thing (1492). A physical
feature is an integral part of something, whereas it can be
distinguished as a separate item, although the boundary between the
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feature and the whole may not be well defined. An example of a
physical feature is a rim or a lifting lug.

o A physical document is an amendment of another document
(4742).

o A route is a part of a network (1787).
o A course is a part of a route (1439)
o A person or organization is a member of an organization (5537).

o A individual thing is component in a composed whole (4661)
whereas the component is arranged in a pattern in a particular
position. For example, an arrangement of components that are
connected in a sequence, such as in a chain. The first and last
component in a chain have a special position, which can be specified
using the following subtypes:

o An individual thing is arranged in a first position in a sequence of
components in a composed whole (6069).

o An individual thing is arranged in a last position in a sequence of
components in a composed whole (6070).

There are separate kinds of relations for specifying relations between
pairs of components in an arrangement, such as the arrangement of
items in a sequence (see par. 7.10).

7.1.1 Extents, concentrations and recipes

A component or portion is always a fraction of the whole of which it
is a part. A composition relation only indicates that the component is
a part, but does not specify to what extent that is the case. For
example, it might be the stated that a fluid consists of x %wt of a
particular component, thus specifying the concentration of the
component in the fluid. In fact this expression uses a more precise
composition relation, expressing that the fluid consists of (has as
part) a component that comprises x % of the mass of the whole fluid.
In other words it is an ‘x % part-whole relation’. This meaning can
be expressed accurately by classifying the relation twice: first
classifying it as a composition relation and secondly classifying its
extent by a fraction or percentage on a scale. For example, the
concentration of salt in a sample of seawater can be expressed in this
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way and also the mass of a component relative to the mass of whole
item, as is illustrated in the following table.:

Left hand object Relation Extent Unit of nght. hand
type measure object
Batch of seawater | has as part 3 wt% Batch of salt
my car has as part 10 wt% my engine

Thus the extent, possibly quantified on a scale indicated by a unit of
measure, expresses the extent that a composition relation is the case.

Also classification relations can be only partially the case, especially
for a classification by substance, e.g. when classifying materials of
construction or ingredients in a mixture. Then it may be that in fact
only a part of the whole is classified that way. For example, when a
material is classified by substance as being water, then usually it is
not 100% pure water. The purity can be specified by stating e.g. that
it is classified as 98% water. Furthermore, the impurities can be
expressed by specifying e.g. that the material is classified as 1% salt.
The following table presents such expressions in Formal English.

Unit of .
Left hand object | Relation type | Extent | measur nght. hand
o object
Batch of seawater is classified by 98 wt% water
substance as
Batch of seawater is classified by 1 wt% salt
substance as

This mechanism can be used to specify e.g. recipes. When the
components need to have separate identities, for example because
there can be additional information about those components, then
the composition relations with specified extent should be used. If the
components are pure substances or natural ingredients, then it may
be sufficient only specifying a number of classifications by
substance.

The value can also be an upper or lower limit value for an extent. In
such cases a subtype of the kind of relation should be used to
express whether the value should be interpreted as a lower limit or
as an upper limit value. For example the usage of the subtype kinds
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of relations <has with a minimum ratio as part> and <is classified by
substance as at least> indicate that a specified extent is a lower limit
value.

7.2 Connections
Connections between physical objects can be specified in a simple
way by a binary relation as:

A <is connected to> B

4658
binary relation between
individual things

& 5754

hvsi |73€.04-# relation between . 730044
physical objec physical objects physical object

1487
is connectedto

is logically 1445
connectedto

is physically 1446 5724
connected to is touching

Figure 38, Connection relations

It may be expressed explicitly that physical objects are physically
connected, but a connection may be logical, such as for example a
funnel that is logically ‘connected’ to a drain, as it should be located
under the drain, whereas the connected items may not be in physical
contact. Also in telecommunication there are connections without
physical contact. Thus connected items may physically be
connected, but nevertheless they may not have a direct contact, such
as when isolation material is used to avoid direct contact. On the
other hand it may be required to explicitly express that two physical
surfaces touch each other.

7.2.1 Connection assemblies

A specification that two physical objects are connected does not

specify how those things are connected. How things are connected
can be 730044

very complicated, because various kinds of connection materials
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may be involved, such as fittings, flanges, gaskets, nuts and bolts or
welds. The modeling of such connections typically requires the
creation of a ‘connection assembly’.

A connection assembly is an assembly (an assembled physical
object) that has as parts the ends of the items that are connected,
together with the connection material(s). By making the parts and
ends or physical features of the components explicit it becomes
possible to specify details. For example, it can be specified which
end is connected to which other end or which surface is touching
which other surface. The parts, ends and surfaces must then be
specified as distinct components of the connection assembly. For
example, two pipelines are connected by a flanged connection that
uses a gasket and a bolt set. A typical example of a specification of
the details of such a connection is presented in the following
connection model:

Pipeline-1 is connected to Pipeline-2
Flange-1 is a part of Pipeline-1
Flange-2 is a part of Pipeline-2
Conn-1 is classified as a flanged connection
Flange-1 is a part of Conn-1
Gasket-1 is a part of Conn-1
Flange-2 is a part of Conn-1
Boltset-1 is a part of Conn-1
Surface-1 is a feature of Flange-1
Surface-G1 s a feature of Gasket-1
Surface-G2 is a feature of Gasket-1
Surface-1 is a feature of Flange-1
Surface-1 is touching Surface-G1
Surface-2 is touching Surface-G2

Note that each flange is specified to be a part of a pipeline as well as
a part of the flanged connection. Furthermore, a flanged connection
is defined in Formal English as a subtype of a connection assembly
(and not as a subtype of a connection relation). This enables to
specify the parts of that assembly and features of those parts. Finally
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that makes it possible to specify which surface is touching which
other surface to make the real physical connection. Typically this
decomposition is accompanied by a specification of the geometry of
such a connection, which is usually presented as a drawing. The
specification of geometry is beyond the (current) scope of this book.

7.3 Routes through networks

Routes and paths are physical branches that connect physical
terminals or nodes in a physical network. For example a road has a
role as a branch that connects its begin or ‘source’ physical object
with its termination or ‘destination’ physical object and a fluid may
follow a route through a network in which piping connects
equipment. Each source or destination or intermediate node is a
physical object in its own right similar to a connection assembly.
Examples of a node are a roundabout or a power distribution
terminal.
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Figure 39, Relations between terminals, traffic and routes

Figure 39 illustrates the kinds of relations that can be used to
specify the relation of a source and a destination physical object with
a route, or part of a route. The figure also mentions a kind of relation
to relate traffic to a route, by specifying that some object, such as a
vehicle, follows a particular route from source to destination. Note
that it may be required to define the retour route as a separate route.

Routes can be composed of sections. Each section behaves as a
smaller route (see ‘composition of a route”’).

7.4 Aspects of individual things

Physical objects have aspects, such as characteristics, qualities and
properties. Most aspects are intrinsic to the object, such as its color,
length, temperature or material of construction. Some aspects are
extrinsic, which means that the existence of the aspect depends on
the existence of a relation with another physical object. For example,
it may depend on a role in a relation with something else.

Individual aspects are related to individual physical objects by a
<possession of aspect> relation, which is usually denoted by the
phrase <has as aspect>.
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It should be noted that related objects are not aspects of objects. For
example, many data models and systems define entities that have
‘attributes’ which often appear to be independently existing other
things. Examples of such things are locations, manufacturers, parts,
etc. Such things shall be related to the physical object by other
relations than the ‘possession of aspect’ relation or one of its
subtypes. Thus attribute is not a synonym of aspect.

binaryrelation 4658
betweenindividual things
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hasas 1767
idecomposition structure]

Figure 40, Possession of an aspect and its subtypes

Figure 40 shows that individual things can have individual aspects
and are generally related by an expression, such as:

Individual thing-1  has as aspect  A-1

Depending on the subtype of aspect it is possible to use a
semantically more precise specification of the kind of relation.
These kinds of relations are subtypes of the possession of aspect
relation (1727) and thus form a hierarchy of kinds of relations.

The first subtype specifies that the individual object has a particular
individual role. Such a role is an extrinsic aspect, which means that
its existence is dependent on the existence of a relation with another
object and it also means that the role is only possessed by the object
during the time that it has the role.
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The distinction between the subtypes of characteristic, being
(physical) properties and qualities is based on the distinction
between quantifiable properties and non-quantifiable qualities. For
example, properties, such as diameter and temperature, can be
quantified by a numeric value on a scale. For example, a property
may be quantified as 30 mm or 37 degC. On the other hand, there
are qualities, such as color, toxicity, flammability, being pregnant,
etc. which are not (directly) quantifiable, but are qualified by values
that are typically denoted by terms, such as red, green, toxic, non-
toxic, etc. or by a category code, such as an RGB-code. Nevertheless
some qualities can be correlated to quantifiable properties. For
example, color can be correlated to frequency of light, which is a
(quantifiable) property. Furthermore, properties may (also) be
qualified by values that are denoted by terms provide a (rough)
indication of their value. For example, a temperature may be
qualified as hot or cold, without specifying the precise value.

Note: in information science the qualitative values for qualities are
often called ‘literals’, which usually means that users of systems are
allowed to use free text to denote them. However, they are
qualitative concepts that shall be (and are) defined in the dictionary
of Formal English. Thus ‘free text’ is not allowed in a formalized
language.

There are some relations for qualities for which in natural language
dedicated terminology is used, which are also be adopted in Formal
English. This holds especially for relations that express that
something can have a particular kind of structure or that it can be
made of a particular kind of substance, such as plastic, wood or steel
(which is in fact is a statement that it can have a particular kind of
atomic or subatomic structure).

The above described subtype kinds of relations can be used in a
model for example as follows:

Object-1 has as role Role-1

Object-1 has as property Temp-1
Object-1 has as quality Color-1
Object-1 has as shape Shape-1
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Object-1 has as aspect Material of construction-1
Act-1 has as property Duration-1

The above statements only specify that the object or occurrence
possesses an individual aspect with a certain name, but not the
nature of the aspect nor its quality or size. The latter requires that
each of the individual aspects need to be classified and qualified or
quantified on a scale (as is discussed in par. 8.1 and 8.2
respectively).

Instead of specifying that an individual object possesses an
individual aspect, it is also possible to use a short-cut relation to
relate an individual object directly to a qualitative aspect (which
leaves the individual aspect implicit). For example, this can be done
by stating that an individual object is cylindrical or that it is made of
stainless steel. Such short-cut relations are further discussed in par.
8.1.5. The advantage of explicit individual aspects is that there is a
smaller chance of ambiguity. Explicit individual aspects are
explicitly classified, they allow for multiple individual aspects of the
same kind and they enable that the same aspect has multiple
qualification and quantifications in the course of time.

The latest example in the above table (about Act-1) illustrates that
not only physical objects can have aspects, but also occurrences can
have some aspects. In the example, the activity has a duration (a
time aspect). An occurrence can also have a location in time,
possibly indicated by a date of begin or end.

Note that it is a common mistake to erroneously state that
occurrences have aspects, whereas in fact objects that are involved
in the occurrences possess those aspects.

Furthermore, note that aspects cannot possess aspects. When aspects
are related, then they are related by a correlation between aspects,
which is a different kind of relation. For example, the temperature
that marks the end of a temperature range is correlated to the range
by an ‘end of range’ correlation. Similarly a color does not possess a
frequency of light, but a color and a frequency of light may be
correlated. Correlations are discussed in par. .
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7.5 Occurrences and states

States are situations that last for some time. There are static states
and dynamic states. In static states nothing changes from some
macroscopic perspective, whereas dynamic states are states in which
a change takes place. Therefore the latter are called occurrences or
happenings.

Occurrences include human activities, business processes as well as
physical and chemical processes, and events. Events are typically
short during processes. Sometimes the duration of an event is very
small and can be neglected, but by nature something cannot happen
within a duration of zero. Nevertheless the period of occurrence
(duration) of an event can sometimes be denoted by a single value,
pointing to a duration within a second or part of a second.

7.5.1 Objects involved in occurrences

An occurrence, such as an activity, a process, an event or a
happening, is a state that changes a pre-state situation into a post-
state situation, whereas the change implies an interaction of involved
things within the duration of the (dynamic) state.

730067
4767 individual

involves thing

(L (g (L (L 730074
physica
| activity I| process I event Ihappeningl object

Figure 41, Subtypes of occurrence and involved things

occurrence

Figure 41 illustrates some subtypes of occurrence, whereas there are
numerous further subtypes of occurrence. Those subtypes are
usually denoted by verbs in various forms, which all refer to the
same kind of occurrence. For example, the terms acting, act, to act
and action all denote the same concept. The ‘activities’ domain
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Taxonomic dictionary provides a large taxonomy of kinds of
occurrences.

Occurrences involve individual things, especially individual physical
objects. Each involvement of an individual thing in an individual
occurrence in a role of some kind can be expressed by a binary
involvement relation, which is denoted by the phrase <involves> or
its inverse phrase <is involved in>. For expressing the difference in
roles that can be played by the involved things it is required that the
involvement relation is specialized by defining a number of subtype
kinds of relations.

Figure 42 illustrates a large number of standard subtypes according
to roles that can be played by involved things.

730067 193671
individual 4546 >7 4767 4< 4773
. . - . ; occurrence
thing involved is involved in involver
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- is output of - is subjectin - is oceurrence period of
-is controllerin [|-is an aid in - is place of occurrence of
-is customerin [|-isatoolin - Is managing organization of
- is performer of - is planner of - is provider of - is managing contractor of
- is enabler of - is schedulerof [|-is committer of | |- is contractor of
- is manager of - is engineering contractor of

Figure 42, Subtypes of the involvement relation

Figure 42 also shows the ‘involved’ and ‘involver’ roles that are
played by definition in such a relation. Each subtype of the
involvement relation requires by definition a role of a particular kind
that is played by the involved thing. Those kinds of roles are
subtypes of the ‘involved’ kind of role. For example, mechanism,
performer, enabler, input, output, manager and contractor are kinds
of roles that have their own definition and position in a taxonomy of
roles.

The kinds of roles can be used to find the proper kind of
involvement relation. Further subtypes, other than the ones defined
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in the in the TOPini section of the Taxonomic dictionary, can be
defined as and when required.
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7.5.2 Relations between occurrences and between states

Physical objects, solid, liquid as well as gaseous ones, can be in
various states. This can be recorded by a binary ‘being in a state’
relation as is illustrated in Figure 43.
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Figure 43, A physical object that is in a state
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This also holds for aggregations of physical objects, such as systems
and networks. Such states are typically temporal states during a
particular period in time. The life of physical objects might be
partitioned in a sequence of such states, also called lifecycle phases’.

States and occurrences may be related to each other in various ways.
Such relations may be between states of the same object, or may be
occurrences in which the same object is involved, or it may be
between states and occurrences in which different objects are
involved. For example, during planning and scheduling of activities
the sequence of activities is typically constrained by the persons or
resources that are available and that cannot be involved in different
activities at the same time.

Note that a state and an occurrence cannot occur twice, nor can it
occur after itself. This is expressed in the definition of the relations
between states and relations between occurrences by specifying a
constraining relation (5960) that expresses that a state that has a role
as relator in a relation between states cannot also have a role as
being related in that same relation.

7 A physical object in a state is sometimes called a 'temporal part' of the
physical object (for example in ISO 15926-2). A physical object in a
particular state denotes the same physical object as the partitioned physical
object. The aspects and relations of a temporal part are only applicable
during the period of existence of the state (the lifecycle phase).
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Figure 44 illustrates some relations between states and occurrences.
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Figure 44, Relations between states and between occurrences
The following relations between states can be distinguished:

o State transitions: <is changed into> (1199).

States may change over time. This is often described as state
transitions, which are changes from a pre-state to a post-state
situation.

o State sequences: <is a successor in time of> (5815).
A succession of states in time describes a chain of states.

As occurrence is a subtype of state, Relations between occurrences
(5703) are also subtypes of relation between states (5814), because
occurrence is a subtype of state (an occurrence is a dynamic state).
Therefore, the following kinds of relations are also subtypes of
relations between states:

o Sequences of occurrences: <occurs after> (1388).

Occurrences may appear in a particular sequence, where the
succeeding occurrence starts after the termination of the preceding
occurrence.
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Figure 45, Sequences of occurrences

Figure 45 illustrates two situations: Occurrence-2 as well as
Occurrence-3 starts after Occurrence-1 is terminated. To
distinguish these two situations, a time gap (a) between the end
of the preceding and the begin of the succeeding occurrence can
be specified as a property of the relation. For example:

o Rel-1 hasasaspect T-1
T-1 is classified as a time gap
T-1 has on scale a value equalto 5 min

Note that a negative value of the time gap means that the
succeeding occurrence and the preceding occurrence occur
partly in parallel.

This is equivalent to defining two subtypes as follows:
o <occurs immediately after>
This relation implies a time gap of zero duration. It represents a

relations such as between Occurrence-1 and Occurrence-2 in Figure
45.

o <occurs some time after>

This relation expresses that the succeeding occurrence starts some
time after the termination of the preceding occurrence. This represents
a relation such as between Occurrence-1 and Occurrence-3 with time
gap (a) in Figure 45.

o Relation between starts of occurrences: <begins after start of>

The begin of a succeeding occurrence might be related to the start of a
preceding occurrence. This corresponds with the relation between
Occurrence-1 and Occurrence-3 with time gap (b) in Figure 45. This
time gap can be specified in the same way as in the previous example.

Note that a time gap of zero in this case means that the two

occurrences start at the same time and that a time gap greater than the
duration of the preceding occurrence means that there is no overlap.
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The constraint that the time gap is less than the duration of the
preceding occurrence corresponds with the following subtype
relation:

o <begins during progression of> (5706).
This kind of relation enables to specify that a succeeding occurrence
begins during progression of the preceding occurrence, possibly
without explicitly specifying the time gap.

o <is triggered by> (2026).

This kind of relation expresses that an occurrence is triggered by
another occurrence. Typically the triggering occurrence is an event,
being a short during occurrence. Typically the triggered occurrence is
in fact only a creation process or a termination process as is illustrated
in Figure 46 below. Such a creation or termination is a part of an
occurrence. However, in many cases it is states that a whole
occurrence is triggered by a triggering occurrence.

o <is a controlling process for process> (5864).

This specifies that a control process controls a controlled process. The
details of how such a control is effectuated should be specified by a
specification of the various sensing, controlling and actuating actions
that are part of the control process, together with the signals and
objects that are involved.

o Cause and effect: <has as cause> (1922).

An occurrence can be a cause of a beginning (creation) or a
continuation after an interruption, or a termination of a state, which
can be another occurrence.
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o This is illustrated in Figure 46.
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Figure 46, Cause and effect and triggering of occurrences

As a creation or a termination is a subtype of occurrence, which
is a subtype of state, this kind of relation can be used to specify
either that a whole state is an effect, or that a creation or a
termination is an effect. The cause and effect relation has a
number of subtypes that specify more precisely what the
relation is between a causing occurrence and a state that is an
effect:

o <is the cause of begin of> (4671)
o <is the cause of end of> (4672)
o <is the cause of interruption of> (5816)

o <is areaction to> (5860)

These kinds of relations express that a state is caused to begin or
caused to be terminated or caused to be interrupted by or is in some
way a reaction to an occurrence.

7.5.3 Time of occurrences and states

States can be the case or occurrences can take place at a certain
moment or within a period in time and that state or occurrence has a
particular duration. A moment or period in time should be
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occurrence takes place. On the other hand, a moment or period in
time is always located in the course of time, thus refers to a calendar
time.

Thus a state or occurrence has a duration. The duration can be
expressed as a numeric value on a time scale (unit of measure). This
is illustrated in Figure 47.
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Figure 47, Duration of a state or occurrence

The quantification of the duration by a numeric value is discussed in
paragraph 8.2.

For example, a duration of an occurrence, such as a particular repair
activity can be expressed as:

Repair-1 has as aspect D-1
D-1 is classified as a duration
D-1 has on scale a value equal to 3.5 hour

Note that a duration can be quantified on a scale just as any other
property. The lower part of Figure 48 therefore illustrates the
specification of the fact that a duration can be quantified on a time
scale and it provides a number of subtypes of time scale as are
included in a formalized language dictionary.
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A state or occurrence takes place within some period in time or at a
point in time, which is located in a calendar time. This is illustrated
in Figure 48.
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Figure 48, Timing of a state or occurrence

A point in time is a short period in time, referred to by a single
value. A point in time typically has an undefined duration, whereas
it is typically represented by a period within which something takes
or took place or started to take place, such as second in time. A
period in time has in principle a defined duration, which duration
may be defined as the duration between two points in time.

There are three possibilities of how an occurrence or state relates to
a period in time:

o The occurrence happens precisely during the period (4872). This
happening can be a historic fact from the past (5078) or it can be a
required happening during a period (partly or completely) in future
(5080) or it can be an expected happening in a future period (5082),
seen from the perspective of the moment of registration of the idea.

o The occurrence happens completely within the period (4871),
whereas the period is larger than the duration of the occurrence. For
example an occurrence that starts and stops within a day.

159



o The occurrence started before the beginning of the period and/or
terminated after the end of the period (1785). Thus it is happening at
least partly during the period.

The latter relation has two subtypes:
o The occurrence begins at a point in time and continues after that.

o The occurrence terminates at a point in time, and was ongoing
before that.

A period in time or a point in time is always an individual period.
For example, an individual period can be a particular day, such as 23
December 2013 at the Gregorian calendar. Such a date can have
various roles in multiple relations with occurrences that take place
on or during such a day. To facilitate that not every user of Formal
English needs to allocate UIDs to dates, a generic rule is included in
the language definition that states:

Dates and times

Thus dates are individual periods, denoted typically relative to a time
scale which is normally called a calendar. Dates may be denoted in
different notations, such as in a dd mmm yyyy or yyyy:mm:dd
notation, etc. in calendar time, such as the Gregorian calendar.
Various standard notations for times and dates are defined in ISO
8601.

Date: 2013-12-22

2013-12-22T21:08:07+00:00
2013-12-22T21:08Z

Combined date and time in UTC:

Week: 2013-W51
Date with week number: 2013-W51-7
Ordinal date: 2013-356

Table 35, Example date and time according to ISO 8601

Time periods are typically denoted relative to a local time zone in
which an occurrence takes place. Within such a time zone, the time
has a standard offset relative to the time scale called Greenwich
Mean Time (GMT) or to a time scale called Coordinated Universal
Time (UTC). For example, Nepal has a standard offset of +5:45
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UTC hours, which means that a particular moment in time, the time
is denoted in Nepal by a value to which 5:45 hours should be added
to get the UTC time (which is nearly identical to the time in
Greenwich during winter). This means that the date value should be
accompanied by the time scale UTC+5:45.

To facilitate unambiguous references to the same dates in Formal
English, each date should represent by a UID. This is done by
defining the following rules:

o Dates (periods of a day) between the year 1500 and 3000 in the
Gregorian calendar (also called the Western calendar) have by
definition a UID between 15.0000.000 and 30.000.000, such that the
first four digits denote the year, the second two denote the month in
the year and the last two digits denote the day within the month.

For example UID 20131223 represents the 23™ of December
2013.

o Furthermore, a month in a year is represented by a UID that is a
number that ends with two zero’s (as if it is day zero). For example,
UID 20131200 represents the period December 2013.

o Finally, a year is represented by a UID that is a number that ends
with four zero’s. For example, UID 20130000 represents the year
2013.

The standard offset relative to GMT or UTC is in fact using another
time scale that is defined by a shift relative to a standard time scale.
To explicitly model the time scale, it can be recorded that a time
value is a quantification on a particular time scale, such as UTC,
UTC+1, UTC+5:45, etc. For example:

A-1 is beginning at point in time 2013:12:23:16:08  UTC+1

A date-time value may include not only seconds, but also parts of
seconds. A convenient time scale for that is an epoch date system,
which uses a rational number for the number of seconds (and parts
of seconds) since the epoch date. Thus the date value (in seconds)
has as unit of measure the epoch date system. For example the ‘2000
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date system’ ®* An example of the quantification of a moment in time
in seconds since 1 January 2000 is:

T-1has on scale a value equal to 441806615,3 s since
2000

Note that the unit of measure, such as ‘s since 2000’ should be
defined in the dictionary.

8 See: http://en.wikipedia.org/wiki/Epoch_%?28reference date%29
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7.5.4 Time of occurrences about physical objects

The period within which an occurrence about a physical object takes
place, or the moment at which it takes place, is often not recorded as
a timing of an occurrence, but as a relation between a period in time
or date and the physical object that is subjected to the occurrence (or
as an ‘attribute’ of the physical object), as is illustrated in Figure 49.
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Figure 49, Timing of occurrences about physical objects

However, semantically a particular period in time or date can have
various roles at the same time. For example, a particular date can be
(have a role as) arrival date and birth date and release date, etc. of
the same or different things together. Therefore, the timing of such

163



an occurrence in which a physical object is involved is expressed as
a relation between the physical object and a period in time.

Examples of dates at which something about a physical object takes
place are:

Train A has as arrival time 10.38 h

Thus, the role of the period in time (or of the date) can be used to
find the proper kind of relation, and additional kinds of relation can
be added as and when required.

Note that each kind of relation can be denoted by an inverse phrase,
when the left hand and right hand objects in the expression are
inversed. For example, the kind of relation <has as completion date>
can be denoted by an inverse phrase as is used in the following
expression:

3-3-2000 is completion date of Project X

7.5.5 Location of occurrences and states

States are the case and occurrences happen at a particular place or
location. Such a place or location can be denoted as at a physical
object or at a space. The relation that is used to specify that an
occurrence takes place at a location that is denoted by a physical
object is illustrated in Figure 50.

4767
is involving
= & 5083 =
8. 730044
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of occurrence occurrence object

Figure 50, Occurrence at a place
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The relation that is used to specify that a state is the case or an
occurrence takes place at a location that is denoted by a space is
illustrated in Figure 51.
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Figure 51, Location where something is the case

To denote that an occurrence takes place at a location it is more
natural to use the synonym phrase <occurs at location>. The space
can be denoted as being at a spatial point or along a line (a path), on
a surface or in a volume.

7.6 Relations between objects involved in
occurrences

Physical objects that are involved in an occurrence in different roles
are often directly related to each other, without explicitly mentioning
the occurrence. For example, it can be expressed that a particular
company <is the manufacturer of> a particular individual physical
object. This can be done by using such a phrase for the involvement
relation or its inverse phrase as follows:

My car is manufactured by Volvo Sweden

Such a the relation implies that there has been some production
process in which the party and the object were involved as
manufacturer and as manufactured respectively. Thus although from
such a relation it can be deduced by logic that there is or has been an
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occurrence, that occurrence may remain implicit in the model. Thus
such kinds of relations are short-cut relations for models in which
the occurrence is explicit. Figure 52 illustrates a number of subtypes
of such a kind of short-cut relation. The subtype kinds of relations
relate objects that are both involved in the same occurrence, each in

its own role.

Note that the roles can be played by physical objects, including
social entities, such as organizations and families as well as
individual persons. Furthermore, some kinds of relations, for
example a custodianship may be regarding an individual thing that is

not a physical object.
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object physical objects IS custodian of
&
53685 90010
interacts with PELSOon
- . 5478
1% Sur‘“?‘fted to is performer of an activity about
an activity by
5386
is designed by
5160
is made by
I-O 5152

is manufactured by

5625

is driven by

5150

is supplier of

5590

productmanager of

Figure 52, Relations between objects involved in occurrences
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Short-cut relations are sometimes denoted by a phrase that is
expressed from the perspective of the first role player in the relation
and sometimes by an inverse phrase that is expressed from the
perspective of the second role player in the relation. Therefore, the
left hand object is either a performer or is subjected to the activity.

Further subtypes, other than the ones already defined in the upper
ontology section of the Taxonomic dictionary, can be defined as and
when required. It should be noted that these kinds of short-cut
relations imply occurrences that may not appear explicit in the
information model. However, if such an occurrence is made explicit,
possibly at a later stage, then the objects that are involved in that
occurrence are not automatically recognized as being involved in
that occurrence.

7.7 Facts caused by acts

The short-cut relations of the kinds that are mentioned in the
previous paragraph are by definition caused by an occurrence of
particular kinds. The definitions of the kinds of short-cut relations
define by what kind of occurrences they are caused. In a modeled
definition this is specified by a relation of the kind <is by definition
caused by a>. For example, the fact that my car is manufactured by
an organization by definition implies that that fact is caused by a
manufacturing activity. This can be expressed as follows:

Name of.left hand Name of kind of relation Name of l:lght
object hand object
is manufactured by | is by definition caused by a manufacturing
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A number of examples of such relations between facts and acts are
given in Figure 53.
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Figure 53, Facts caused by acts

Relations between the kinds of relations and the causing kinds of
occurrences are included in the upper ontology section of the Formal
English Taxonomic dictionary to provide a basis for logic reasoning
either to derive an occurrence and its classification, or to verify the
consistency between short-cut relations and occurrences that are
explicitly included in an information model.
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7.8 Purposes and objectives

The reasons why people create things are the purposes for the
existence of things. There are also objectives why occurrences
should take place. This objective can be in order to achieve a
particular state or in order to prevent a particular state.

The kinds of relations that can be used to express such purposes are
presented in Figure 54.
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Figure 54, Purposes of existence

Note that the ‘possession of purpose’ is a relation between
something and a state that has a role as purpose. The thing that has a
purpose of existence can also be a relation, or an occurrence (which
is modeled as a higher order relation). For example a connection
relation A-B has as objective to achieve that ‘A is connected to B’
(which is a state).
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7.9 Collections

A collections of things is a plural object (with a UID) in which the
collected things have no particular role, apart for possibly being
arranged in a sequence. The collected things are assumed not being
connected. There are various kinds of collections, dependent of the
kinds of things in the collection: collections of individual things,
collections of kinds and mixed collections. Different kinds of
relations are to be used to express relations with different kind of
collections. This illustrated in Figure 55.
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Figure 55, Specifying a collection
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Figure 55 illustrates how things can be explicitly declared to be
elements in a collection. The generic collection relation (2846) can
be used for specifying elements in any kind of collection (with
individuals, kinds or both). This also holds for its first three
subtypes. The first and the second subtype express a particular
position of an element in a collections in which the elements are
arranged in a sequence, such as in a list. Note that any particular
collection needs to be classified as a collection or as one of its
subtypes, such as list, row, stack, etc. and may be classified as a
collection of individual things or as a collection of kinds.
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By using the <is an element of> relation (1227) it can be specified
that the collected thing is an individual things and that the collection
is constrained by being a collection of individual things. If one of the
two is not consistent with other information about the related things,
the software should generate an error message.

Note that a collection of individual things has an identity (UID) and
may consist of a number of physical objects, each with their own
identity. Those physical objects might be put in some kind of bag or
package. Then the filled bag or package is a new whole with another
identity. This bag or package is not a collection, but it is a composed
object that is a composition of the bag and (the elements in) the
collection.

Usage of an <is an element in collection of kinds> relation (4730)
implies the constraint that the collected thing should be a kind and
the collection is a collection of kinds only.

Apart from definition collections by their elements, there are various
other relevant kinds of relations between single things and
collections. A number of them are presented in Figure 56.
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Figure 56, Relations between single things and collections

Sometimes it is required to specify that a collection is complete for
the composition of a particular composed object. This means that the
necessary and sufficient elements for a particular purpose are present
in such a collection. This can be expressed using relation 5645
which is a relation between a complete collection and an object that
is or can be composed from the collection. For example a complete
inventory may specify that a collection consists of all the
components that are necessary to make a particular assembly.

The relation <is an assembly of the elements in> (5623) specifies
that each element in the collection is or is intended as a part of the
indicated assembly.

The relation <is presented on one of> (5627) expresses that
something is presented on at least one of the elements in a
collection. For example it may be expressed that some object is
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presented on at least one of the documents in a collection of
documents.

The relation <has as parameter list> (5348) expresses that a
particular list is a parameter list for some object. Typically a list for
some mathematical function or software module.

For the definition of the other kinds of relations, see the Gellish
taxonomic dictionary.

7.10Sequences and location of things in space

The position or location of an individual thing in space, such as the
location of a physical object or an aspect, can be expressed with a
location relation between the located thing and the physical object
that acts as a reference. This is illustrated in Figure 57.
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Figure 57, Relative placement

The reference location can be a large physical object or a small one,
such as a physical point. This relative placement is specified by
using a simple binary relation. The accuracy of the location depends
on the size of the reference object. The relation does not specify the
precise position within the reference object, not does it specify the
orientation of a located physical object. The location of an object in
a coordinate system is described in the next paragraph.

Elements in a sequence

Another kind of arrangement includes that a location is specified as
a relative position in a sequence, without explicitly specifying an
absolute position. For example, it can be stated that individual things
(A through N) are at particular positions in a sequence. This implies
that those individual things that are arranged are elements in a
collection (comprising the things in the sequence). The latter can be
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made explicit by declaring for each thing that it is an element in the
collection. This is described in par. 7.9. The combination of being
element of a collection and being arranged in a sequence is
illustrated in Figure 58.

Figure 58, Elements of a collection arranged in a sequence

To specify the complete sequence, in principle it is sufficient to
specify for each pair in the sequence which one is next to the
previous one. However, to be specific on the completeness of the
chain it can be valuable to specify which one is the first one in the
chain and which one is the last one after the one but last one.
Therefore, as shown in Figure 59, the sequence relation (5332) has
subtypes for the first and last element.

Thus a sequency relation specifies that:

o A component is the next component after another component
(5332).

The first and the last component in a sequence requires the use of the
following subtypes of a sequency relation:

o Being a first element before a specified other element in a
sequence (5932).

o Being the last element after a specified other element in a sequence
(5338).
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Figure 59, Arrangement of individual things in a sequence

Figure 59 also shows two other subtypes, one indicating that a
sequence is ordered from low to high and a relation that specifies
that a sequence is an arrangement (a location) in space.

A specification of a sequence can be accompanied by a specification
that the elements in the row belong to a particular collection. This
can be specified by declaring for each thing that it <is collected in> a
particular collection as described in par. 7.9.
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7.11Binary logic relations

Figure 60 presents a number of binary relations that originated in
logic and mathematical set theory. They are applicable to semantic
modeling as they define specific characteristics of various categories
of binary relations. Such characteristics can be used to formally
deduce consequences from statements that use kinds of relations that
are a subtype of one or more of these kinds of binary relations.
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— 3
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P
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single valued relation
inverse 5965 | )
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Figure 60, Kinds of binary relations

The last two kinds of relations, single valued relation and inverse
single valued relation, are well known in data modeling, but should
be used with care, because they are specialized versions of the more
general cardinality constraints specifications as are applicable for
relations between kinds of things (see chapter 10). An expression of
a binary relation between kinds of things has in principle left hand as

176



well as right hand simultaneous cardinality constraints. An n,m right
hand cardinality pair of constraints means that one individual of the
kind at the left hand side may have minimally n and maximally m
number of individuals of the kind at the other side at the same time
for the specified kind of relation. However, those constraints may
vary between possibilities, requirements and definitions about the
same kind of relation. Furthermore, it should be noted that in Gellish
they are defined as simultaneous cardinality constraints, which
means that they hold for relations that have a validity period that
overlap in time, but the constraints do not apply for relations that do
not overlap in validity period.

7.11.1 Parent-child relations

A typical example of a transitive and irreflexive relation is an
ancestor relations and its further subtypes as presented in Figure 61.
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Figure 61, Transitive and irreflexive relations: ancestor relations

177



An ancestor relation (<is an ancestor of>, 5966) is defined as a
relation chain between individual things that indicates that the
person that has a role as ancestor has as descendant the person that
has a role as descendant.

The ancestor relation is therefore a subtype of ‘binary relation
between individual things’. However it is also a subtype of
‘transitive relation’ and a subtype ‘irreflexive relation’. This means
that conclusion can be drawn from a chain of such relations.

For example, if some expressions in Formal English state the
following:

A is an ancestor of B
B 1s an ancestor of C

Because it is included in the definition of Formal English that the
ancestor relation is defined as a subtype of transitive relation,
therefore from formal logic it can be deduced that

A 1s an ancestor of C

Nevertheless the latter statement is not explicit in the Formal
English expressions.

Furthermore, it is included in the definition of Formal English that
the ancestor relation is defined as a subtype of irreflexive relation.
Therefore from formal logic it can be deduced that B is not an
ancestor of A, etc. This expressed in Formal English by a denial, as
follows:

denial: B is an ancestor of A
denial: C is an ancestor of B

As well as:
denial: C is an ancestor of A

The multiple supertypes of the ancestor relation are inherited to the
subtypes of that relation. Thus similar conclusions can be drawn
from expressions about parents, grandparents, father, mother, etc.
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7.12 Correlations

7.12.1 Correlations between individual aspects

The values of various aspects of things are often dependent on the
values of other aspects of the same thing or of other things. In such
cases the aspects are correlated.

730044 4886 4962 790229
hysical is a correlation 5827 hasas
object ]4_ with as subject B correlation O parameter aspect
T has as aspect

Figure 62, Correlation between aspects

Typically such an individual correlation between individual aspects
can be modeled as a higher order relation between multiple aspects,
whereas the aspects act as parameters in the correlation.
Furthermore, such a correlation is often concerning (aspects of) one
individual physical object. Then that physical object is called the
subject of the correlation.

For example, an individual physical object B-1 with a mass M-1 is
subject to a force F-1, which result in its acceleration A-1. The
physical law that is discovered by Newton states that there is an
individual correlation C-1 between that mass, force and acceleration.
Such an individual correlation can be classified as being an
exemplar of a known conceptual correlation, such as the law of
Newton. Thus for example: F-1 = M-1 * A-1 is classified asa F =m
* a correlation. The above ideas can be expressed as follows:

C-1 is a correlation with as subject B-1
C-1 has as parameter M-1
C-1 has as parameter F-1

C-1 has as parameter A-1

The classifications of these individual things specify what kinds of
things they are:

C-1 is classified as a law of Newton
B-1 1s classified as a rocket
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M-1 1s classified as a mass
F-1 1s classified as a force
A-1 1s classified as a acceleration

The first four of the above expressions state that the aspects are
correlated, but not how they are correlated. The classifications of
each of the individual things specify what the things are, whereas the
classification of the correlation as a ‘law of Newton’ refers to a kind
of correlation which definition specifies how the parameters are
correlated.

The above is an example of the typically case that a correlation in an
individual case is a special case of a general law. The definition of a
general law, such as the law of Newton, can be modeled as a
conceptual correlation between kinds of aspects. The latter is
discussed in par. 10.9.

7.12.2 Comparison of characteristics

Sometimes statements are made about the relative value of two
different characteristics. This can be done with or without
quantifying the characteristic. These are kinds of binary correlations
in which aspects are compared to each other regarding their value or
declared to which extent they are the same or different from each
other.
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The various ways in which characteristics can be compared are
illustrated in Figure 63.
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Figure 63, Comparison of characteristics

For example, it may be stated that:

risk-1 is less than risk-2
distance-1 is greater than distance-2
range-1 is unequal with overlap to range-2

The kind of relation <is greater than> with its inverse <is less than>
and the kind of relation <is unequal with overlap> can be
meaningfully accompanied by an extent to which they are greater or
less than or to which extent they overlap (see par. 7.1.1)
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7.13 Positioning of objects in coordinate systems

The location of individual things specified more precisely when they
are positioned in a coordinate point that is defined as part of a
coordinate system (a property space), as is illustrated in Figure 64.
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Figure 64, Position of an individual thing is a coordinate system

When a physical object is positioned in a coordinates point, it means
that the origin of a coordinate system in which the shape of the
positioned physical object is defined is located on a coordinates
point in a coordinate system of a reference physical object. To
identify the proper coordinate system it is possible to specify which
physical object is the reference object for which the coordinate
system is defined. Furthermore, the coordinates point has one or
more properties as its coordinates, such as distance in x-direction,
orientation angle, latitude, etc.

The following table provides an example of the specification of the
coordinates of the Eiffel Tower.
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Name of left hand Name of kind of Name of right

object relation hand object

the earth has as coordinate system UPS coordinate
system

The Eiffel Tower is positioned in Coordinate pt-1

Coordinate pt-1

is defined in coordinate

UPS coordinate

system system
Coordinate pt-1 has as coordinate Longitude-1
Coordinate pt-1 has as coordinate Latitude-1

Coordinate pt-1

has as coordinate

Elevation-1

Table 36, Specification of coordinates

Each of the individual things in the above example needs to be
classified, whereas the properties need to be quantified by a numeric
value on a scale. For example, the coordinates of Greenwich, which
is the reference longitude for the UPS coordinate system, can be
expressed as follows:

Name of left Name of kind of |Name of right UoM

hand object relation hand object

UPS coordinate . . coordinate

is classified as a

system system

Coordinate pt-1 is classified as a | coordinate point

Longitude-1 is classified as a | longitude

Longitude-1 has on scale as value |0, 0, 0 Qeg,
min, sec

Latitude-1 is classified as a  |latitude

Latitude-1 has on scale as value |51, 28, 38, Qeg,
min, sec

Elevation-1 is classified as a | elevation

Elevation-1 has on scale as value | 500 m

Table 37, Quantification of coordinates

A coordinates point typically is a three-dimensional relation between
angles and/or distances, but in other coordinate systems it can be one
or two dimensional. The number of dimensions (the rank) of the
coordinate system can be specified, as well as the scale (unit of
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measure) for each dimension or for all the dimensions of the
coordinate system as a whole.

Note that a triple of values (numbers, separated by comma’s) to
denote a value of an angle in degree, minutes and seconds
respectively, is regarded as one qualitative value with one UID. This
notation allows for negative values. Another notation where the
numbers and units of measure are combined in one string, together
with a character to denote the northern or southern hemisphere is
also allowed. For example, the value 51° 28' 38" N denotes the
longitude of Greenwich at the northern hemisphere and 51° 28' 38"
S is a point at the same angle on the southern hemisphere.
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8 Relations between an individual thing and
a kind

A relation between an individual thing and a kind of thing can be
either a classification relation or it tells something about the
individual thing by relating it to a kind, without specifying the other
individual thing of that kind. The latter typically means that the
individual thing is related by a relation of a particular kind to some
individual thing that is classified by that kind.

For example, the statement that a particular building B-1 has an
elevator, is a statement that specifies that some individual thing has
a part that is of a particular kind, without identifying that individual
part. This can be expressed as follows:

B-1 has a part that is classified as a elevator

This relation is in fact a short-cut relation that implies that there is
some object that is a part of B-1 and that is classified as an elevator,
although that object may not appear in this part of the model.
However, it might well be that that individual part appears to be
explicit elsewhere in the model. The verification of the consistency
of the model is further discussed in par. 8.4.1.
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Figure 65 presents some examples of kinds of relations in this
category.
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Figure 65, Kinds of relations that classify relations between an
individual thing and a kind

Typically these kinds of relations are denoted by phrases that start
with <is> or <has>, whereas the phrases include a role and terminate
with <a>. Exceptions on this rules are kinds of relation about
qualitative aspects (see next paragraph) that are denoted without a
preceding <a>. This is the case because qualitative aspects, which
include pieces of information (qualitative information), are defined
as kinds of things.

Note that the list of kinds of relations in Figure 65 is incomplete. Each
of the kinds of relations has or can have further standard subtypes and
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can get additional subtypes as and when required. The following
paragraphs discuss the categories and their subtypes in more detail.

8.1 Classification

Classification of individual things is a prime means to enable
interpretation of what the nature of the individual things are.
Therefore, for a proper interpretation it is required that each
individual thing is classified. This holds for all categories of things,
such as physical objects, aspects, roles, occurrences, relations, etc.

Classification is a relation between an individual thing and a kind
that states that the individual thing is characterized by that kind. The
interpretation is only possible when the kinds (also called concepts)
are defined in a taxonomic dictionary.

Figure 66 presents a number of subtypes of the classification
relation.
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Figure 66, Subtypes of the classification relation

The subtypes are further discussed in the following paragraphs.

8.1.1 Classification by nature

The ordinary classification relation (<is classified as a>, 1225)
usually classifies an individual thing by its nature or characterizing
aspects. It tells what kind of thing it is. Especially solid items are
typically classified by their nature, which for artifacts is determined
by the characteristics of the classified items such as their shape and
construction materials that make an object suitable as performer or
enabler of a particular kind of activity or process (also called its
function).
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Note that a classification of an individual thing by a kind implies
that the individual thing is implicitly also classified by all the
supertypes of that kind as defined in the taxonomy. This makes that
classification by a more specialized kind expresses more knowledge
about the individual thing, which knowledge implies the more
generic classifications.

Examples of classifications of physical objects, aspects, roles of
physical objects or parties and occurrences are:

Obj-1 isclassifiedasa  building
Obj-2 isclassifiedasa  room
Prop-1 is classified as a velocity
Prop-2 isclassifiedasa  color
Role-1 is classified as a tool
Role-2 isclassifiedasa  supplier
Act-1 isclassifiedasa  meeting
Proc-1 isclassifiedasa  corrosion

The richness of the taxonomic dictionary determines the possible
classifications by predefined kinds and the extent to which new
kinds need to be defined in a project.

8.1.2 Classification of aspects of implied parts

In many cases aspects of components are modeled as if they are
aspects of a higher level of assembly and without explicit modeling
of the component. For example, assume that for a pump P-1 it is
specified that it has an inlet diameter D-1. Then D-1 is often treated
as a property of the pump, without modeling the inlet explicitly as a
separate component. Then D-1 will not be classified just as a
diameter (which would suggest that it would be a diameter of the
pump), but it will be classified as an ‘inlet diameter’.

This example illustrates that in such cases the aspects are not
classified by a normal kind of aspect, but by a kind of intrinsic
aspect. A kind of intrinsic aspect is a role of an aspect that is by
definition possessed by a particular kind of physical object.
Therefore kinds of intrinsic aspects have names that include the
name of the kind of physical object of which it is an aspect.
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Typically the kind of physical object is a component in an assembly.
Other examples of kinds of intrinsic aspects are pipe diameter and
wall thickness. These are apparently a diameter of a pipe and a
thickness of a wall. However, the components, such a pipe or wall,
are often not identified or specified explicitly. Semantically, intrinsic
aspects are roles of aspects, so that they are subtypes of ‘role’.
Therefore, the classification of an aspect by a kind of intrinsic aspect
is in fact a classification of an aspect by role (see also par.8.1.4).
Thus, examples of classifications of aspects by a kind of intrinsic
aspect are:

Prop-1 is classified as a pipe diameter
Prop-2 isclassifiedasa  wall thickness

Or semantically more precise:

Prop-1 is classified by role as a pipe diameter
Prop-2 is classified by role asa  wall thickness

The definition models of kinds of intrinsic aspects relate the kinds of
intrinsic aspects to the kinds of physical objects. For example, such a
model includes a relation that expresses that a

pipe diameter  is by definition an intrinsic aspect of a  pipe.

Note that the whole phrase is the name of a kind of relation.
The definition of kinds of intrinsic aspects is further discussed in
chapter 9.

8.1.3 Classification by substance

Batches or streams of fluid are not only classified by their nature as
a batch or stream, but typically they are also classified by the
substance (stuff) that composes the fluids. For example:

Str-1  is classified as a batch of liquid
Str-1 s classified by substance as paint

Similarly, solid items are often classified by a material of
construction (stuff) from which the things are made. This is also a
classification by substance, although typically the phrase <is made
of> is used for such a classification relation. For example:
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P-1 is classified as a bolt
P-1 is made of stainless steel

The phrase <is made of> does not refer to a historic production
process but merely relates the actual state of P-1 to the stuff from
which P-1 is constituted.

8.1.4 Classification by role

Physical objects are often classified by the role they play or the role
they are intended to play. Kinds of physical objects can be
distinguished from kinds of roles, because a role is not an intrinsic
aspect, but an extrinsic aspect. A role is only played as long as a
physical object is functioning or installed and in use or operating.
When a physical object is taken out of its operational context, for
example by putting it in a warehouse, then you cannot interpret its
role from its intrinsic aspects. The same holds for persons and
organizations. For example student is not a kind of person, but a role
of a person and customer and supplier are nor kinds of parties, but
roles of parties.

Thus a taxonomic dictionary should also include kinds of roles so
that physical objects can be classified according to their kind of
(intended or actual) role.

The phrase <has a role as a> is therefor used as a synonym of the
phrase <is classified by role as a>.

Examples of classification by role are:

John  hasaroleasa student

John  hasaroleasa project manager
John  hasaroleasa customer

Str-1  hasarole as a input

Str-1  hasarole as a output

8.1.5 Qualification of aspects by value (qualitative aspects)

To specify what an individual aspect is, it is necessary to classify it
by the nature of the aspect. For example, an individual aspect, such
as A-1, can be classified as a length, diameter, temperature, color,
toxicity, number of items, etc.
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However, aspects are not only classified by their nature, but they can
also be qualified, quantified, compared to or constrained by a
qualitative aspect. Such a specification of a constraint is in fact a
categorization or classification of the aspect by taking the size,
magnitude or severity of the aspect as a criterion and relating it to a
qualitative value of such an aspect. Therefore, the specification of a
constraint is defined to be a subtype of classification.

A qualitative aspect is a kind of aspect value, which is typically
included in a list of allowed values, from which a constraining value
is selected.

The qualification of an aspect implies a qualification relation with a
qualitative aspect, as is illustrated in Figure 67.

56 790229 eglggllgpt
is classj:'led asa aspect toxicity
1229 e.q.
_ 5020 qualitative | 9 :glclj
is qualified as aspect toxic

Figure 67, Classification and qualification of
an individual aspect

A qualitative aspect is a value that may qualify an aspect. The value
can be non-numeric or numeric. Qualitative values are also part of
the formalized language and thus they are typically also included in
the taxonomic dictionary and can be added as and when required.

If a value is non-numeric, then the value is typically denoted by a
character string that is a term or name for a ‘textual value’. For
example, the above kinds of aspects (also called conceptual aspects)
can have qualitative values, such as many, tall, hot, red and toxic.

Examples of classifications and qualifications of aspect are:

T-1 has aspect H-1
T-1 has aspect C-1
H-1 is classified as a height
H-1 is qualified as tall
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C-1 is classified as a color
C-1 is qualified as red

A qualitative aspect is a concept that is typically denoted by a name
consisting of a character string. However, a special case of
qualification is a qualification by a quantitative property value
(which is identified by a UID) which is in fact a quantitative value
on a scale, in which case the number and the scale are not separated
as two distinct things. In such cases the quantitative value is denoted
by a character string that includes one or more numbers as well as a
scale. For example, one may specify the following:

H-1 is qualified as ‘500 mm’

T-1 is qualified as ‘37 degC’

Or a surface area is specified as follows:
A-1 is qualified as ‘3 x5 inch’

Therefore it is a concept that can have a modeled definition which
relates the value to the appropriate number(s) as well as to the scale
(as is discussed in par. 9.5). Such qualitative values may also be
included in a formalized language dictionary.

However, the above method will result in a ‘combinatorial
explosion’ in the dictionary, because of the nearly unlimited amount
of combinations of numbers and scales. Therefor, in Gellish it is
preferred that a qualification by such a quantitative aspect is
replaced by a quantification relation between the (individual)
property and a number, with a separate specification of the scale that
is used for the quantification. This is further discussed in paragraph
8.2.

Because of this possible quantitative nature of the constraining
qualitative aspect, the comparison of an individual aspect can be
with a point value, but also with a range. And a constraint can be
that an aspect value is equal, unequal, approximately equal, higher
or lower than the point value and it can be within or outside (not
within) a range. For those porposes we need separate kinds of
relations.
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Figure 68, Comparison of aspects with qualitative aspects

Note that the range in Figure 68 has a value (with an UID) that is
denoted by the character string, such as in the example *10-20 cm’.

8.1.6 Classification of collections

The classification of a collection means that the collection as a
whole is classified by a kind of collections. For example:

C-1 is collectively classified asa  collection of aspects

Such a classification is semantically different from a relation
between a collection and a kind with the meaning that each element
in the collection is of that kind.

/acollection of each Ofwhich-’ia"l:'; e SOOI
S : individual thing
individual things is classified as a

Figure 69, Collective classification

The latter relation implies a classification of each element in a
collection, without mentioning or even recognizing every element in
the collection. An example of a combination of the two relations is:

C-2 is collectively classified asa  collection of items
C-2 each of which is classified asa M6 bolt
8.2 Quantification of properties on scales

Aspects, especially physical properties, such as diameter,
temperature, etc., can not only be qualified (e.g. as high or low), but
normally they are quantified by relating them to a numeric value on
a scale.
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If an individual aspect is a numeric quantity, then the relation
between the individual aspect and the quantitative value (typically a
number) is a quantification relation (2044). For example the number
of bolts in our stock <is quantified as> 15.

This is illustrated in Figure 70.
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Figure 70, Quantification of aspects on scales

The quantification of a number of things is usually considered to be
a quantification without using a scale. However, this can also be
considered to be a quantification on the scale ‘piece’, because it is
also possible to quantify a number of things as a number of pairs or
dozens, thousands, moles, etc. For example:

N-1

is quantified as

This is equivalent to:

N-1
Similarly:
N-2

has on scale a value equal to 2

has on scale a value equal to 3

piece

dozen
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Thus aspects are typically quantified by a number on a particular
scale (5786). The use of a quantification relation in those cases
implies that a specification has to be provided of the qualitative scale
(unit of measure) that classifies the quantification relation. Thus the
relation between the aspect and the number is not only classified as a
quantification relation on a scale, but that relation is also classified
as a quantification on a particular scale. In other words, the relation
with the scale is a second classification of the quantification relation.
A qualitative scale is also called a unit of measure, but it denotes a
method to relate a property to a number. For example ‘deg C’
indicates a method created by Anders Celcius about how to allocate
numeric values to measured temperatures.

Furthermore an aspect can be quantified as equal to, greater than or
less than the numeric value. It is also possible that the value of an
aspect is variable in time and/or space’, which implies that there are
also avarages over time and/or space. This means that we need
relations that enable to relate to values that are averages, or better:
values for average properties, such as a daily average temperature.

Examples of quantifications of aspect by a number on a scale are:

H-1 has on scale a value equal to 300 m
T-1 has on scale a value greater than 30 deg C

Note that an aspect, such as the height H-1, can be quantified as well
as qualified, as is described in the previous paragraph.

As said before, the value of an aspect can also vary over time or
space. For example, when a property is measured at some sampling
rate by a measuring device, such as a thermometer, it may create
many measured values at different moments in time. In most cases
those values can be recorded as discrete values for which it is
indicated that they are measured at different moments in time. This
is illustrated in Table 38 in which the same property (T-1) has
different values, which is recorded as different ideas about facts,
each of which has a different validity period.

9 For details about the modeling of varying values over time and space is
discussed in the book ‘Semantic Modeling Methodology’ (Ref. 2)
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Name Name of Date- Date-
of left | Name of kind of right Unitof | timeof | time of

hand relation hand measure | start of end of
object object validity | validity
T-1 has on scale a 75 deg C i 0

value equal to

T-1 has on scale a 30 deg C 0 3
value equal to

Table 38, Property values that vary over time

Note that conventional systems usually allow for only one value for
a property, whereas they may even define a property as something
that has only one value. However, we follow the normal practice in
technology that properties can have multiple values in time (and
space). Thus a property, such as T-1, does not change when its value
changes.

The date-time of start of validity and end of validity determine the
period during which the statement is valid, thus for example they
determine the period during which a property has a value that is
considered equal to the specified qualitative (or quantitative) value.
When the two date-time values are equal it is assumed that the
validity period lies within the period determined by that single
specified value. Often such a time stamp is seen as a moment in time
without a duration. However, even the specification of a second or
piece of a second implies some minimal duration, such as the
duration of a second.

The specification of these date-time values are in fact separate
binary ideas, called contextual facts, as is further described in
paragraph 7.5.3.

Quantification by property value ranges

In some cases a property is quantified on a value range. This can be
specified by two quantification statements: one that specifies that the
property <is quantified as greater than or equal to> a specified value
and a second statement that the property <is quantified as less than
or equal to> another specified value at the same time. This has as
disadvantage that it is always required to search for a second
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statement. It is simpler to specify that a property has a value within a
range. For example by a statement such as:

T-1 has on scale a value within numeric range 20-30  degC

A numeric range is a qualitative value (a kind of aspect) that has to
be defined quantitatively in the dictionary. The definition of numeric
ranges is discussed in paragraph 9.5.

8.3 Textual information about individual things

A piece of textual information, called qualitative information, can be
related to an individual thing or can be related to some kind of thing.
The upper half of Figure 71 presents several kinds of relations that
relate an individual thing to a piece of qualitative information. The
lower half presents kinds of relations that can be used to relate
anything to a piece of information, including also individual things.
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Figure 71, Information about individual things

Note that the piece of information (the qualitative information) that
describes, specifies, or contains a description of the individual thing
is an object that will have a UID and may have a name, whereas it is
defined by a description, being the information content. This
description is independent of the way in which it is presented or may
be presented in multiple ways in particular formats on information
carriers. For example, the text of a requirement (P-101 shall ...) is a
description of an object, called ‘Req. 5.1°, which object is the
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qualitative information in which P-101 is described. This can be
expressed as follows:

Left hand Relation tvpe Right hand Description (of
object yp object left hand object)
P-101 is described in Req. 5.1

Req. 5.1 is a part of Sp ecifgciatlon
is a qualitative . )
Req. 5.1 subtype of requirement P-101 shall ...

Table 39, A piece of information about an individual thing

Note that qualitative information is abstracted from one or more
physical representations in possibly multiple copies or versions.
Such qualitative information classifies the information aspects in
those copies and versions. Therefore, it is regarded as a qualitative
kind, a qualitative subtype of the general concept ‘information’.
Therefore, a relation that expresses that some qualitative information
is about an individual thing is a relation between that individual
thing and a (qualitative) kind of thing.

8.4 Relations with implicit individual things

8.4.1 Classification of implied parts

In many models of assemblies the components are not all explicitly
identified, so that the model consists of an incomplete composition
hierarchy. Nevertheless, there is often a requirement to express that
an assembly has one or more components of a particular kind. This
means that there is a relation between the individual assembly and
the kind that classifies one or more of its components. If it is known
how many of the same kind of component it has, that may be
specified by the right hand cardinalities. An example of such an
expression is:

statement: P-1 has a part that is classified as a bearing

Note that it is also possible to explicitly state that such a component
i1s not part of the assembly. This is specified by stating that the
intention of the expression is a denial.
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For example, this is specified as follows:
denial: P-1 has a part that is classified as a bearing

Such relations are short-cut relations that need a verification on their
consistency with possible explicit composition specifications,
because it might be that somewhere else in the model the component
might be specified explicitly. Then it should be detected that these
are (probably) the same components and duplication should be
avoided.

The verification of the consistency of a short-cut relation and an
explicit modeling of a part is enabled by the definition of the kind of
relation. That definition specifies that the short-cut relation is
equivalent with two relations, a composition relation and a
classification relation. So, it may be that software determines that
there is a part explicitly specified and that is classified conform the
specification. For example as follows:

P-1 has as part B-1
B-1 is classified as a bearing

Then by inference the software can conclude that the first statement
implies a part, let us call it E-1. Then it can be recorded that the
short-cut relation is equivalent to the pair of detailed relations,
because apparently E-1 equals B-1.
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9 Hierarchical relations between kinds of
things

Relations between kinds of things can be recursive or non-recursive.
A non-recursive relation, also called a hierarchical relation, is a kind
of relation for which by definition holds that a concept upstream in a
chain of such relations may not appear also downstream in that
chain. Non-recursive kinds of relations automatically result in
hierarchical networks or tree-shaped networks. A hierarchical
relation relates a wider concept to a narrower concept, where the
wider concept is higher in the hierarchy than the narrower concept.
There are various subtypes of hierarchical relations as is illustrated
in Figure 72.
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Figure 72, Specialization relation and its subtypes
Those subtypes are discussed in the following paragraphs.

9.1 Specialization relations - Taxonomies

The most important kind of hierarchical relation is the subtype-
supertype relation (1146), which is also called a specialization
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relation, whereas its inverse is called: a generalization relation. This
kind of relation specifies that a concept is by definition a subtype of
another concept. A specialization relation specifies that the subtype
kind has additional constraints as criteria for membership than the
supertype kind; and each member of the subtype kind is also a
member of the supertype kind. This implies that a subtype kind
inherits all knowledge that is valid for its supertype kind(s), because
every assertion that is true for a supertype is also true for its
subtypes. Formally defined:

A <is a kind of> B if and only if for all x,
if x <is classified as a> A, then x <is classified as a> B.

A specialization relation is transitive and antisymmetric. Transitive
means that a relation of this type between two concepts implies that
such a relation is also applicable between kinds of things that are
indirectly related in a chain of relations of this type. This means that
explicit specification of indirect relations is superfluous.
Antisymmetric means: if concept A is a subtype of concept B, then
B is not a subtype of A.

A specialization relation can be denoted by various phrases, such as
<is a specialization of> or by one of its synonyms: <is a kind of>,
<is a subtype of>, <is a subclass of> or by one of their inverse
phrases, such as <is a generalization of> or <is a supertype of>.

A chain of concepts or hierarchical network of concepts that are
related by relations of this kind is called a taxonomy.

Subtype-supertype hierarchies or taxonomies can be defined for any
category of concepts. Thus there are

o taxonomies of kinds of physical objects in various domains,

o taxonomies of kinds of aspects, such as properties & qualities,
o taxonomies of kinds of roles of physical objects,

o taxonomies of kinds of roles of aspects,

o taxonomies of kinds of relations,

o taxonomies of kinds of occurrences and correlations, etc.
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A consistent collection of taxonomies in various domains should
form one integrated taxonomy, of which all concepts are subtypes of
the generic concept ‘anything’.

9.1.1 Subtypes by distinguishing aspect values

Subtypes of a particular supertype have always an additional
constraint on an aspect or on a composition for which their
supertype has flexibility.

This is illustrated in Figure 73.

has subtypes 5652 :
[ that have as 4)[ conceptual

distinguishing aspecta aspect

concept

6 2070
is by definition qglitarive
concept aspect

‘ Figure 73, Qualitative aspect as discriminator
The supertype concept has flexibility on a conceptual aspect. For
example the concept may have flexibility on its diameter. However
the subtypes have less flexibility. For example each of them may
have a defined diameter. The various subtypes thus have by
definition as aspects a different qualitative aspect, such as a distinct
diameter. For example, the supertype concept bolt has subtypes with
various thread diameters, such as a diameter of 6 mm, 8 mm, 10
mm, etc. respectively.
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9.1.2 Subtypes by distinguishing components

Figure 74 illustrates that there can be subtypes that have by
definition different kinds of components as parts or they can by
definition be without a component of a particular kind.
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Figure 74, Subtypes by presence or absence of
a kind of component

For example the supertype engine may have three subtypes: one
with a turbo type A, one with a turbo type B and a third subtype
without a turbo.

9.1.3 Families of subtypes

The subtypes that have different ‘solutions’ or values for the same
kind of aspect (conceptual aspect) or have different kinds of
component physical objects, together form a family of subtypes.
Those different solutions are usually mutually exclusive, which
implies that an individual thing can only be classified by one kind of
a particular family at the same time. The criterion by which the
subtypes in a family are distinguished is called the distinguishing
aspect or distinguishing part and is also called its discriminator.

Note that the family of subtypes can be determined by logic inference, so

that it is not necessary to explicitly define the collection of subtypes in a

family.
A concept may have multiple families of subtypes, each with its own
distinguishing aspect or component. For example, the concept bolt
has not only subtypes that have as distinguishing aspect their
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diameter, but also subtypes by material of construction with values:
stainless steel, galvanized carbon steel, copper, etc. and also
subtypes with a distinguishing kind of component, being a
hexagonal head, a cylindrical head, etc. Thus the supertype (bolt)
has flexibility in all three aspects. The family of subtypes by
material of construction are stainless steel bolt, galvanized bolt,
copper bolt, etc., each of which have by definition a fixed value as
its material of construction, but still have flexibility in their diameter
and head type.

We can also define further subtypes that have multiple fixed values
for various distinguishing aspects or parts. For example, a ‘6 mm,
stainless steel, hexagonal head bolt’ can be defined as a separate
kind of bolt. Such sub-sub-types have multiple supertypes (three
‘parent’ kinds). The latter implies that such subtypes inherit
characteristics of all their supertypes.

Individual things may be classified multiple times as being a
member of multiple kinds, belonging to different families, but they
may also be classified once as being a member of a sub-sub-type.
For example:

) ) ) 6 mm, stainless
) 1s a collection of which
Collection B1 . steel, hexagonal
each element classified as a
head bolt

9.2 AQualitative aspects

Kinds of aspects can be distinguished in conceptual aspects and
qualitative aspects. Conceptual aspects are aspects that have no
quality or value. Qualitative aspects are aspects of which the size or
magnitude or severity is qualified or quantified by a fixed value or
by a range. For example, concepts such as red, toxic, short, ‘S mm’
and ‘10-20 degC’ are qualitative aspects that are qualifications of the
concepts color, toxicity, length and temperature range. The latter are
(generic) conceptual aspects that are unqualified.

The kind of relation that specifies that a qualitative aspect is a
qualitative subtype of a conceptual aspect is called a qualification
relation, which is denoted by the phrase <is a qualitative subtype of>
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(1726). Note that the qualification relation is a subtype of the
specialization relation.

Examples of relations between conceptual aspects and qualitative
aspects are expressed as follows:

red is a qualitative subtype of  color
toxic is a qualitative subtype of  toxicity
5 mm is a qualitative subtype of  distance
etc.

9.3 Types of physical objects

Kinds of physical objects can be distinguished in generic kinds and
types of physical objects. A type of physical object is a kind of
which a number of its aspects have by definition a fixed value. A
relation between a type of physical object and its generic supertype
can be specified by using the qualification relation as well.

An example of a relation between a type of physical object
(qualitative physical object) and its generic supertype is:

M6 bolt s a qualitative subtype of  bolt

The specification that a particular type of physical object has by
definition particular aspect values may be given in a textual
definition that is only meant for human interpretation (as described
in par. 5.8) or may be expressed in a definition model (as described
in par. 10).

9.4 Manufacturer’s models and standard types

Further subtypes of types of physical objects are manufacturer’s
models or catalogue items that are denoted by a model identifier (for
a standard configuration and shape) and possibly by a standard size.

The kind of relation that can be used to specify a relation between
such a manufacturer’s model and a higher level concept or type can
be denoted by the phrase <is a model of>. This kind of relation is a
further subtype of the specialization relation (and of the qualification
relation). For example:
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Volvo S40 isamodel of car
Siwamat 6140 is a model of washing machine

The manufacturer’s models and standard types and sizes are
typically specified in quite some detail. However, not all of their
aspects need to have fixed values, and not all of their components
are always fully defined, because various options may still be open.
The detailed specification of a manufacturer’s model by be given in
a textual description (see par. 5.8) or in an explicit definition model

(see par 10), or as a reference to an identified document (see par.
5.9).
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9.5 Quantification of quantitative values on a scale

A special case of qualitative aspects are quantitative aspects, which
are aspect values (concepts) which magnitude or size can be defined
by a relation with a numeric value on a scale. Note that these are not
individual aspects, but ‘standard values’, such as allowed values that
might be defined by a property range or might be listed in pick lists.
(Quantification of individual aspects is discussed in par. 8.1.5). An
example of a particular length or distance is the concept ‘300 mm’,
which is a particular qualitative value that can be defined by it’s
quantification as being equal to the number 300 on a millimeter
scale. Such a definition is then expressed as follows:

300 mm is a qualitative subtype of distance
300 mm is by definition quantified on 300 mm
scale as equal to
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The model that is the basis for this example is illustrated in the upper

part of Figure 75.
qualitative
scale
; ; \mm
A

&
1799 5683kg
qualitative is a quantification
aspect onscale
[ . 5901})7 1791 2949
quantitative can be quantified mathematical
aspect bya space
e.g.300 mm eg.R-
20-30m 5279 910132 920202
can be quantified [ Rlimae: CJ [ range ]
on scale as equalto e.q.3

300 e.g.20-30

can have on scale a value 1500
5280

greaterthan or equalto

shallhave on scalea value 5493
greaterthan

shallhave on scale a value 5532
greaterthan or equalto

L can have on scale a value |53
lessthan or equalto

shallhave on scalea value 5494
lessthan

shallhave on scalea value 5633
lessthan or equalto

Figure 75, Quantification of quantitative aspects

In Figure 75 a relation, such as R-1, is a conceptual quantification
relation (1791) between a quantitative aspect (5901) and (usually) a
number (910132) (but in general a mathematical space (2040)),
whereas R-1 is also qualified as a ‘quantification on scale’ (5683)
kind of relation. In other words, the relation R-1 is qualified in two
ways, first as a quantification that is using a particular scale or unit
of measure. The unit of measure is made explicit by a second
qualification of R-1 as a quantification on some particular scale,
such as a millimeter scale.
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In tabular form this is expressed as follows:

R-1 is qualified as a ‘can be quantified by a’ relation
R-1 is qualified as a ‘mm’ (scale) relation

Note 1: The scale ‘mm’ is a kind of relation, because it qualifies the
way in which a property is related to numeric values.

Note 2: Both relations, ‘can be qualified by a’ and ‘mm’, are
conceptual correlations, because they relate kinds of aspects.

(Note that qualitative aspects, such as ‘300 mm’ and ‘300’ as well as
‘mm’, are subtypes of kind of thing).

For example, the quantification relation between the length value
‘300 mm’ and the mathematical concept ‘300’ is a relation that is
qualified by a unit of measure, being ‘mm’. Such a unit of measure
or scale is a particular (qualitative) method that is a mapping relation
between an input (a particular length) and an output (a particular
number) of the method. Therefore a scale or unit of measure is a
kind of relation.

Scales are standardized and included in the Dictionary. They form
their own hierarchy as illustrated in Figure 76.

1733
scale

570630
~C| lengthscale

e.g.m, mm, inch, angstrom, etc.
. 0697

=C| duration scale

e.g.GMT, UTC

] 571769
n® time scale

e.g.s, d, y, etc.

-C) etc.

Figure 76, Scales and units of measure

It can also be predefined in a knowledge base which subtype of scale
is (by definition) intended for quantification of which kind of

property.
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For example:

length scale is by definition a scale fora  distance

The relation between a quantitative aspect and a number does not
need to be an equality relation, it might also be specified by some
kind of inequality relation, Therefore there are subtype kinds of
relations defined that enable to express requirements that the value
shall be greater than (or equal to) and/or less than (or equal to) some
value. Furthermore, such expressions may not specify a possibility
or a requirement, but something that is by definition the case.
Therefore further subtypes are defined for the expression of
definitions (which are not shown in Figure 75). The latter kinds of
relations can be used for example to define the property range ‘2-5
mm’ as follows:

Name of left . . Name of right
hand object Name of kind of relation hand object UoM
2-5 mm is a qualitative subtype of | property range
2-5 mm is by definition quantified on 5 mm
scale as greater than or equal to
2.5 mm is by definition quantified on 5 mm
scale as less than or equal to

A property range is not necessarily defined as being bounded by
numeric values on a scale. It can also be defined as being bounded
by property values (qualitative aspect). In those cases the boundaries
are defined by another kind of relation, being a relation between a
qualitative range and a qualitative value, which is a conceptual
correlation between aspects, because both related things are kinds.

212



This is depicted in

Figure 77.

2066
conceptual correlation

can have 5032

asboundary a
4838

o = . 1229

qualitative by has by definition as qualitative
aspectrange qualltatlvelboundary aspect

E 7l

e.g.2-5 mm X 2917 L 49018 e.g.g mm
has by definition has by definition
as lower boundary| las upperboundary

Figure 77, Definition of the boundaries of a qualitative range

The use of these kinds of relations is illustrated in the following

example:
Name of left . . Name of right
hand object Name of kind of relation hand object
2-5 mm is a qualitative subtype of property range
2-5 mm has by definition as lower boundary 2 mm
2-5 mm has by definition as upper boundary 5 mm

Numeric ranges differ from property ranges, because they are not
quantified on a scale. However, the definition of numeric ranges is a
relation between quantitative values, which is a subtype of a relation
between qualitative values. Therefore, such definitions can be
expressed by using the same kinds of relations as above.

For example the range ‘20-30° might be defined as follows:

Name of left . . Name of right
hand object Name of kind of relation hand object
20-30 is a qualitative subtype of fUMETICe

range
20-30 has by definition as lower boundary 20
20-30 has by definition as upper boundary 30
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Intrinsic aspects are aspects that are by definition possessed by a
particular kind of object. Therefore, usually their name includes the
name of a kind of physical object. For example, ‘lock position’ or
‘pipe diameter’. Allowed values for such kinds of intrinsic aspects
are often defined by explicitly specifying discrete optional values.
For example, the allowed values for the position of a lock might be
specified as ‘open’ or ‘closed’. That can be specified as follows:

Name of left . . Name of right
hand object Name of kind of relation hand object
lock position can have as option open
lock position can have as option closed

The general model for such specifications is given in Figure 78.

2066
conceptual correlation

can have 5032
as boundary a
=
G D 5227 qualitati1v2eh9
intrinsic aspect can have as option aspect
e.g.lock position e.g. o,aen
closed

Figure 78, Specification of options for kinds of intrinsic aspects

Another way of specifying such discrete allowed values is by first
creating a collection of qualitative aspects, also called an
‘enumerated list of values’, and the specifying that some kind of
intrinsic aspect is related to that collection. For example:

lock position shall be one of the  allowed lock positions

The kinds of relations that are required to define such a collection are
described in chapter 11.
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10 Conceptual relations between things of
specified kinds

The Gellish allows expressing what is true, but also allows
expressing what is untrue or is fantasy and what can not be the case
in a normal world. As such the language definition does not specify
constraints on what is possible or not. Nevertheless, the Gellish
definition includes constraints that specify what things are. It also
enables verifying the consistency of expressions. Furthermore,
Gellish can be used for expressing explicitly what is known as
possibilities. Such knowledge about possibilities can be expressed
by using subtypes of the generic possibility relation, also called a
‘conceptual relation between things of specified kinds’ (4698). Such
a relation expresses that relations of the specified kind between
things of the specified kinds are known to be possible. Thus such a
subtype relation between kinds of things expresses knowledge about
possibilities for individual things of particular kinds, i.e. what can be
the case. If something is a requirement, so that it shall be the case in
a particular context, than it must necessarily be a possibility.
Therefor, requirement relations are subtypes of possibility relations.
If some relation expresses what is by definition the case for things of
specified kinds, then such a relation shall and can be the case as
well. Therefor, defining relations are further subtypes of requirement
relations. These kinds of relations are all called ‘conceptual
relations’ because they specify in concept (in principle) what can,
shall be or is the case for individual things of the specified kinds.
This means that in principle relations of such kinds can be used
either to derive relations between individual things of such kinds, or
they can be used to verify whether relations between individual
things conform to the specified possibilities, requirements or
definitions.

It should be noted that if something is not declared as a possibility, it
nevertheless may be possible. However, a party may apply the rule
that individual relations may only be created after the possibility of
such a relation is explicitly specified.
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Figure 79 illustrates the top of this branch of the hierarchy of kinds
of relations that are subtype of the generic possibility relation

(4698).
relation

(@]
relation 4718
between kinds of things
| |
A
binary relation 5937 4698 conceptual relation
between kinds of things generic possibility | between things of specified kinds

folile)

1231
canbe relatedto a

binary generic possibility

5735 |conceptua| requirementfor a binary relation
shall be related to a [hetween things of specified kinds

is by definition 9736 | by definition being the case
related to a

Figure 79, Relations for the expression of knowledge,
requirements and definitions

Those subtypes specify what can be the case, i.e. possibilities, what
shall be the case, i.e. requirements or what is required to be the case
(in a particular context) and what is by definition the case, i.e.
definitions.

10.1 Modeling possibilities, requirements and
definitions

10.1.1 Knowledge about possibilities

Knowledge expressions typically express possibilities. In other
words, they express what can be the case. Such possibilities are
modeled using subtypes of a (generic) possibility relation between
kinds of things. The generic possibility relation can be of any order
and therefor it has as subtype a second order possibility relation, also
called a binary possibility relation. Further subtypes of kind of
binary possibility relation can be expressed by using subtypes of a
binary generic possibility relations. Phrases that denote such
subtypes typically comprise fragments such as <can be ... a> or <can
have ... a>.
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For example, the following kinds of relations are intended to express
knowledge about possibilities:

pump can have as part a impeller
impeller can have as aspecta  diameter

Chains or networks of relations of such kinds form knowledge
models.

A generic possibility kind of relation defines that a relation of such a
kind means that in practice such a relation is possible for at least
some of the things of the related kinds. For example, at least some
pumps can have an impeller. However, by default the relation does
not specify that every pump can have an impeller. The relation does
also not specify how many impellers a pump can have
simultaneously or during its life. If any of those options is limited,
then that constraint can be added by specifying cardinality
constraints. Simultaneous cardinality constraints limit the number of
individual things of a specified kind that are simultaneously
minimally and maximally allowed to be related to one related
individual thing of the other kind. Cardinalities are further discussed
in par. 13 and 13.4.3.

10.1.2 Requirements

A requirements kind of relation specifies that relations are required
between individual things of a kind that satisfies the requirement.
This means that in practice such a relation is required by the
requiring party for any of the individual things of the related kinds.
Requirements shall be realized in practice as well as being
incorporated in the information model that describes the realization.
Realizations of possibilities and requirements are further discussed
in par. 10.5.

When something is required for a particular kind of thing it implies
that it is also possible for at least some of the things of such a kind
(at least in the opinion of the requirer, although a requirement may
be in conflict with the possibilities). Therefore, kinds of relations
that express requirements are defined as subtypes of relations that
express possibilities about kinds of things.
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A party or standard that formulates a requirement has a role as the
validity context within which the requirement holds and is recorded
as a contextual fact in the appropriate Gellish expression.

Phrases that denote requirements typically comprise fragments such
as <shall be ... a> or <shall have ... a>.

10.1.3 Definitions

Definitions of kinds of things are statements about what is by
definition the case for those kinds of things. If for an individual
thing it is specified that something is not the case, whereas for things
of a particular kind it is declared that something is by definition the
case, and then that means that the individual thing is not of that
kind. In other words, the things that are by definition the case are
necessary conditions for being a member of the defined kind. We
distinguish between textual definitions and modeled definitions.
Textual definitions that are expressed as textual information are
discussed elsewhere. Here we discuss only modelled definitions,
which are definitions that are expressed as definitional relations. If a
definition for a kind of thing is completely modeled, then satisfying
all definitional relations is sufficient for determining that something
is a member of the specified kind. However, it should be noted that
in many applications, especially in design application, individual
things do not (or not yet) have aspects on the basis of which they
might be classified by a kind, but it is the other way around:
(imaginary) individual things are declared to be classified by a kind
in order to specify that the definition of the kind also applies to the
individual thing. Thus, in such cases the aspects of the individual
things are derived from the definitions of the kinds.

Definitional relations that are necessary conditions for being
member of a kind should be distinguished from things that are
normally the case for well-formed things of the kind. This
encyclopedic knowledge about well formed things is usually
modeled as a requirement in the context of some norm for well-
formed things of that kind.

218



Kinds of relations that express what is by definition the case are
defined as subtypes of requirement relations, because what is by
definition the case is also required and is also possible.

Phrases that denote definitions typically comprise fragments such as
<is by definition ... a> or <has by definition ... a>.

10.2 Compositions of things of particular kinds

A conceptual composition relation between things of particular
kinds (1261) expresses a possibility which is the knowledge that an
individual thing of a particular kind (possibly) can have as part one
or more other things of a particular kind. Such a statement is usually
abbreviated by stating that

kind A <can have as part a> kind B.
Such a statement implies that the inverse is also true:
kind B <can be a part of a> kind A.

The minimum and maximum number of individual things of kind B
that can simultaneously be a part of one individual thing of kind A
can be specified by two simultaneous cardinality constraints. For
example the constraints 0 and n, expressed as [0, n]. Normally one
part of kind B can simultaneously be the part of only zero or one
whole of kind A. This can be specified by the other cardinality
constraints, for example as [0, 1]. Cardinality constraints in general
are discussed in par. 13.4.3.

A possibility, such as specified above, can be realized by one or
more individual realities that can be modeled by using the
counterpart composition relation (1260). Such a relation expresses
that

some individual thing <is a part of> some other individual thing
(as is discussed in par. 7.1).

Such knowledge presents an option that can typically be used during
design or construction of assemblies of individual things or when
complex projects, activities and processes are composed.
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Figure 80 illustrates that a possible realization relation (5091)
between a possibility (a possible composition relation) and a reality
(a real composition relation) is modeled as a relation between
relations.

1231 | conceptual relation between
can be relatedto a [things of specified kinds

730067
1260| {  canbe5091 1261 ﬁ individual
has aspart realized by a can haveasparta thing

730044

4989 i 193671
|sha|lhaveas parta| [ pggjseliitil [occurrence”

has by def“nltlon
asparta 5519

Figure 80, Possible composition of things of specified kinds

The figure also shows that the possibility is defined as a subtype of a
conceptual relation between individual things (1231), which relates
two different individual things (730067). This implies that the
composition relation can also be applied for possible composition
relations between all the subtypes of individual thing. For example it
can be applied for possible compositions of physical objects of
various kinds or for possible compositions of occurrences of various
kinds, because they are subtypes of the concept ‘individual thing’.

Furthermore, what holds for a possible relation (1261) also holds for
its subtypes: a requirement for one or more composition relation
(4989) and a composition relation that is by definition the case
between a whole and a part individual thing of the specified kinds
(5519). Usually a requirement and a definition specify that every
whole of a specified kind shall have, or by definition has one or
more things of a specified kind as parts. It may also specify that a
part of a specified kind shall be or by definition is a part of a whole
of a specified kind. The precise meaning shall be indicated by
specifying the left hand and right hand simultaneous cardinality
constraints.

There are various ways in which things can be composed, depending
on the kind of connection between the components, if any, or
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depending on the kind of component that is composed and the kind
of role that is played by the component. These different ways of
composition can be expressed by using different kinds of
composition relation. Figure 81 presents a number of such subtypes
of the conceptual composition relation.

1231 | conceptualrelation between
can be relatedto a | things of specified kinds

1261

can haveasparta

conceptual composition relation

can have 122
LO 1228
as elementa

can be an 5538
organization fora

can 1410
have asfeature a

can 1411
contain asroute a

can 5808
have as openinga

can have 1191
asassembledparta

can have 5665
as desiredparta

o s W T

s

L0 can have as 5666
unnecessaryparta

can haveas 5667
condlitional parta

Figure 81, Subtypes of conceptual composition relation

The various subtypes of the conceptual composition relation have
the following meaning:

o can have as element a

specifies that a collection of a specified kind can have things of a
specified kind as elements, whereas the elements form a collection, in
which they are not coherent, although the elements may be in a
sequence.
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o can be an organization for a
specifies that things of a specified kind can be members of an
organization of a specified kind.

o can have as feature a

specifies that a physical object of a specified kind can have a feature
of a specified kind. A feature is an integral part of a whole and may
have an undefined boundary with the rest of the whole. For example a
rim or an integrated lifting lug that is casted in a body.

O can contain as route a
specifies that a network of a specified kind contains a route of a
specified kind.

o can have as opening as
specifies that something of a specified kind can contain a hole of a
specified kind.

o can have as assembled part a

specifies that a whole of a specified kind can have a part of a specified
kind that is assembled in the whole. It implies that there is a
connection relation between the part and one or more other parts of
the same whole.

This kind of relation has the following subtypes:

o can have as desired part a

specifies that an assembled part of a specified kind is not only
possible, but also desired, which expresses a preference without being
an obligation. Such a preference is always only valid in a particular
validity context. The specification of a validity context is discussed in
par. 13,

o can have as unnecessary part a
specifies that an assembled part of a specified kind is allowed, but not
required within a particular validity context.

o can have as conditional part a

specifies that an assembled part of a specified kind is only possible
under a particular condition. The condition may be specified in a
conditional consequence relation (an if-then relation) as is discussed
in par. 10.10.
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10.3 Aspects of things of particular kinds

A specification of the possibility that things of particular kinds can
possess aspects of particular kinds can be expressed by using a kind
of relation that specifies that an individual thing of a specified kind
can possess and aspect of a specified kind. This kind of relation can
be denoted by the following phrase:

<can have as aspect a>

When an individual thing possesses such an aspect in reality, that
fact does not necessarily imply that an information model about the
individual things also includes a possession relation for such an
aspect. Therefore, the meaning of such a statement is that it is
possible in reality and it is also allowed in an information model
about an individual thing of such a kind in order to reflect reality or
to reflect an idea (an imaginary individual thing).

Figure 82 presents this kind of relation with its supertypes and its
most important subtypes.

2850
relation

relation 4745
between kinds of things
I |

&
binary relation 5937, 4698 conceptual relation
between kinds of things generic possibility between things of specified kinds
L

conceptual binaryrelation

can berelated to a| between things of specified kinds

2060| possibility that a thing of a specified kind
can have as aspecta|po an aspect of a specified kind

shall have 4054 requirement that a thing of a specified kind
asaspecta possesses an aspect of a specified kind
hasby deﬁnition2070| by definition having
as qualitative aspect | a particular aspectvalue
is defined by 5527 by definition having
possessing as aspect a | an aspect of a specified kind

Figure 82, Possible possession of aspects by things of a kind

The main subtypes of the <can have as aspect a> kind of relation are
mentioned in Figure 82. They have the following meaning:

o shall have as aspect a
This specifies a requirement that any individual thing of a specified
kind shall possess an aspect of a specified kind. This implies that a
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thing of such a kind in reality shall possess such an aspect and it
implies that an information model about a possessor shall include a
relation with such an aspect, as well as information about the
qualitative or quantitative value of the aspect. In case of a quantitative
value the model shall also include a relation with a scale that is used
to determine the value. This seems trivial, but for a computer it is not
trivial, as it implies that several binary relations need to be specified.
For example, assume in a requirements model for roads in a particular
context there appears the following expression of a requirement:

road shall have as aspecta width

Then the requirement implies for any individual road it is
required to specify not only that the road has an individual
aspect that is classified as a width, but also that its value is
specified and if the value is a quantitative value that then the
scale for that quantification is given.

Thus, assume that an information model contains the
expression:

B-23 is classified as a road

Then the requirement implies that three expressions are
required, similar to the following example:

B-23 has as aspect W-1
W-1 s classified as a width
W-1  has on scale a value equal to 5.20 m

o The requirement holds within a particular validity context (for
validity context see par. 13.4.

o This subtype has the following further subtypes:

o has by definition as qualitative aspect

[or] is by definition qualified by

[or] is by definition

This specifies that any possessor of a specified kind by definition
possess an aspect that has a qualitative aspect of the specified value.

For example:
- horizontal vessel <is by definition> horizontal.
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o 1is defined by possessing as aspect a
This specifies that a concept is defined by having a qualitative aspect
(value) that is a qualitative subtype of the specified conceptual aspect.
This implies that each individual thing of the specified kind has an
aspect of the specified kind that is qualified by the same qualitative
aspect (value).
For example:

- horizontal vessel <is defined by possessing as aspect a> orientation

Other kinds of expression can be used for specifying what the aspect
values are allowed to be or by definition are.

10.3.1 Properties and qualities of things of particular kinds

Depending on the kind of aspect it is possible to use more dedicated
subtypes of the <can have as aspect> relation. Some of such
subtypes are presented in Figure 83.

canberelatedtoa

1231] conceptual binary relation

L

2069
can have as aspecta

hetween things of specified kinds

possibility that a thing of a specified kind
possesses an aspect of a specified kind

can have 4792
as characteristica

can have 1810
as property a

can have 2050
as quality a

can have 4795
as structure a

canbe

4796
made of

canhave 1711
as shapea

Figure 83, Dedicated relations for possible kinds of aspects

The distinction between the subtypes of characteristic, being
(physical) properties and qualities and their further subtypes is
discussed before in par 7.4.
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As in most other cases the kinds of relations about possibilities have
their corresponding kinds of relations that express requirements and
things that are by definition the case.

Thus there are also kinds of relations, such as:

shall be made of
is by definition made of

The kind of shape (or qualitative shape) of physical objects of a
particular kind (or of a type or manufacturer’s model and size) is a
special kind of quality. Shapes can be qualified by their qualitative
value. For example as cylindrical shape, complex shape, etc. This
can be used in expressions such as:

object type-1 shall have as shape a cylindrical shape
cylindrical vessel has by definition as shape a cylindrical shape

Shapes can be specified in further detail by parametric geometric
correlations (mathematical functions) or combinations of them. Such
correlations are defined in coordinate systems, whereas various
dimensions of the shaped physical object and its parts or features
play a role as parameter values in the correlations.

10.3.2 Time aspects of states and occurrences of kinds

It may be specified that a state or an occurrence of a particular kind
can or shall take place within a particular period in time. For
example it can be specified that any occurrence of a particular kind
can or shall occur within a particular period of time. For example, it
may be specified that any payment shall be within 30 days (from the
date of issue of an invoice). Then the kind of occurrence is related to
a qualitative duration. This can be expressed for example as follows:

payment shall occur within a period of 30  days

Note that the qualitative duration is a qualitative aspect, which value
is normally specified as a number on a scale (see also the
quantification of individual aspects in par. 8.2).

It may also be specified that for any occurrence of a particular kind
it is required that information is provided about the planned or actual
period in time or date of occurrence (see Figure 84).
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This mean that it is specified that such an occurrence shall take place
within some period in time (which implies a maximum duration)
such as a month in time, or that is shall occur at some date. For
example a requirement for information, such as:

project  shall occur within a period of a month in time
delivery shall occur at a date

The above example requirement means that it is obligatory that it is
specified for any project in which month it shall take place and for
any delivery what its delivery date is or will be.

conceptual binary relation
can berelated to a | between things of specified kinds

2060] possibility that a thing of a specified kind
can have as aspect a | possesses an aspect of a specified kind

can have 4792
as characteristica

can have 1807
astime aspecta

can occur4927
within a period of (a)

shall occur 6013
within a period of (a)

5339
can occurata
4928 I-o 5433
can be createdata shall occurata

4931

'C canberevised ata

Figure 84, Relations for possible time aspects

Sometimes a planned or actual creation date or revision date for
individual things is recorded, which means that the creation or
revision process is completed at that date, although the process
might have a longer duration than a day. It is possible to express a
requirement for the recording of such a creation or revision date
about any object of a kind. Such a requirement is expressed as a
relation between a kind of physical object and a kind of period in
time. Such a relation is in fact a short-cut relation as it implies an
occurrence (a creation or revision), although that occurrence may
not be modeled explicitly.
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Examples of the use of such expressions of requirements are:

connection shall be recorded to be created ata  date
pump shall be recorded to be revised ata  date

The time aspect to which a state, occurrence or physical object is
related does not need to be the concept ‘date’.

Other subtypes of time aspect are given in Figure 85.

time aspect

Gmomentin time

periodin time

Cpart of secondin time )
- secondin time

- minute in time

- hourin time

- date (day in time)
-weekin time

- month in time

- year in time

Figure 85, Subtypes of time

A moment in time is indicated as a concept that is distinct from a
period in time. Nevertheless, there are strong arguments for the
opinion that moment with zero duration do not exist so that a
moment in time is in fact a period in time with an unspecified short
duration. We therefore use a pragmatic definition that a moment in
time is defined by only one time value, without a specification of a
duration. On the other hand, a period in time is defined (in principle)
by two time values, either by a start value and a duration, or by a
start time value and a termination time value. For example, if a
moment in time is denoted by a second in time, then it is assumed
that the occurrence started and is possibly completed within the
duration of that second.
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10.3.3 Roles and role players of particular kinds

The concept ‘role’ is an extrinsic aspect of a role player that depends
on a relation in which the role player plays such a role. Thus the
concept role is a subtype of aspect. Subtypes of roles are for
example usage and application. A role is typically played by
something in a relation to something else, during a certain period or
during the whole of the lifetime of the role player. Figure 86
presents some kinds of relations that classify relations between kinds
of things and kinds of roles.

conceptual binary relation
can berelated to a | between things of specified kinds
2069] possibility that a thing of a specified kind
can have as aspect a|possesses an aspect of a specified kind

4714
canhavearoleasa | canbeusedasa

4732
shallhave aroleasa

includes by definitior? 76 1
as possiblerole a

has by definition 5944
asfirstrolea

has by definition 5945
as secondrolea

Figure 86, Kinds of roles played by kinds of things

A <can have a role as a> relation can be used to express the
knowledge that any individual thing of a specified kind can play
roles of a specified kind, without specifying in which kind of
relation that is the case.

For example:

paint layer can have arole asa protector against corrosion
man can have arole asa father

Because usage and application are subtypes of role, there are
subtypes of <can have a role as a> such as <can be used as a> and
<can be applied as a>.

Separately it is possible to specify that for binary relations of a
particular kind there are by definition (always) two particular kinds
of roles involved. For example, a parentship relation between a
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father and a child has by definition as first role a father and as
second role a child. This can be specified as follows:

is a father of  has by definition as firstrole a  father
is a father of  has by definition as second role a child

In other situations (in a particular context) it may be a requirement
that roles of a particular kind shall be played by things of a particular
kind, or the inverse, which specifies that things of a particular kind
shall play a role of a particular kind. Note that a requirement
relations shall be accompanied by a validity context.

All the above kinds of relations may be accompanied by cardinality
constraints. For example, one man can have zero to many father
roles, whereas a (biological) father role can be the role of one man
only. Thus

[1,1] man can have arole as  [0,n] father

10.3.4 Aspect of parts of things of particular kinds

Sometimes it is specified that some part of a kind of physical object
has an aspect of a particular kind, without specifying which part or
which kind of part is involved. To specify such knowledge or
requirement requires a relations between a kind of physical object
and a kind of aspect, whereas the aspect is not an aspect of the
physical object itself. Such a kind of relation is presented in Figure
87.

123 1] conceptual binary relation
can berelatedto a | between things of specified kinds

LC 2069] possibility that a thing of a specified kind
can have as aspect a| possesses an aspect of a specified kind

LC can have a part 5247
with as aspecta

LC can have apart 1301
with as function/role a

Figure 87, Kinds of aspects of a part of a kind of thing

A <can have a part with as aspect a> (5247) relation specifies that
any individual physical object of a specified kind can have some part
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that has an aspect of a specified kind. A relation of this kind implies
that such an individual thing has an individual part, although that
part may remain implicit, or may be specified explicitly in another
expression. That implied part has an aspect of the specified kind.
This kind of relation has as further subtype:

o can have a part with as function a

[or] can have a part with as role a (1301)

This specifies that any individual physical object of a specified kind
can have a part that has a role of a specified kind. Such a role may be
called a function of the part. However, a function is normally an
(intended) activity or process.

10.3.5 Definitions of kinds of intrinsic aspects

As discussed in par. 8.1.2, a kind of intrinsic aspect is a kind of
aspect that by definition is possessed by a particular kind of things.
The possessor is typically denoted by the fact that the name of the
kind of intrinsic aspect includes the name of a kind of physical
object that is the possessor. For example, the kind of intrinsic aspect
‘pipe diameter’ includes the name ‘pipe’ in its name. For human
beings the intrinsic relation with a pipe can be interpreted from such
a name. However, for computers it is necessary to specify that
relation explicitly as decribed below.

Such a kind of intrinsic aspect is not an ordinary aspect, but it is a
role of an aspect, because it is a role that is played by an aspect in a
‘possession of aspect’ relation with a possessor of a pre-defined
kind. The definition of an intrinsic aspect can therefore be modeled
by specifying not only a specialization relation with (a subtype of)
role, but by specifying also two other relations: one relation with the
kind of aspect that plays the role and the other relation with the kind
of thing (physical object) that is by definition its possessor. Thus, for
example:

pipe diameter is a kind of intrinsic aspect
pipe diameter is by definition an intrinsic aspect of a pipe
pipe diameter is by definition an intrinsic diameter
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10.4Kinds of occurrences

10.4.1 Conceptual involvements in occurrences

Kinds of things can be involved in particular kinds of roles in kinds
of (higher order) relations to model the involvements e.g. in kinds of
occurrences. Formal English should enable to specify the knowledge
of possibilities, requirements for involvements and definitions of
kinds of occurrences that imply particular kinds of things that are

involved.

Conceptual involvements are presented in Figure 88.

285(
relation

relation 4718
between kinds of things
L

fe
binary relation 5937 4699 conceptu

O . .
> 723 7] conceptual binary relation
can be related to a|between things of specified kinds

conceptual 4900 | thing ofa speci

shall be5401
involvedin a

Figure 88, Conceptual involvement

al relation

between kinds ofthings generic possibility between things of specified kinds
L | |

fiedkind can be involved in a

involvementin a relation| relation of a specified kind

can he 4648| possibilitythat a thing ofa specified kindis
involved in a | involvedin an occurrence of a specified kind

requirement that a thing ofa
specified kind is involvedin an
occurrence of a specified kind

in occurrences

To enable to express more precisely in which kind of role some kind
of thing can be or shall be involved requires the use of subtypes of

the <can be involved in a> relation.
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A number of examples of such subtype are given in Figure 89.

730044 2765 4766 193671
phyglcal concep(ually>7 can be4€48 4< conceptual >_, occurrence
object involved involvedin a involver
| |
& 5689
canbe canbe4783
amechanismina an input for a
I
L 5170 X 4650 L 4314 canbe4784
canbean canbea can bea fulfiller an outputofa
enablerofa performer ofa of function can ba4649
¢]> 5732 J) 5019 5757 subjectedtoa
shallbe an shallbe a shallbe a 5577
enablerofa performer ofa fulfiller of function canbe ¢
5750 5531 5536 e
is by definition is by definition is intencledto be canbe4051
a possible a possible suitable fora a controllerof a
enablerofa performer ofa is intended as

fuffiller of function
Figure 89, Examples of subtypes of conceptual
involvement relations

Additional subtypes are available in the upper ontology section of
the Gellish language dictionary.

10.4.2 Conceptual sequences of occurrences

A conceptual sequence of occurrences relation is defined as a
relation between two concepts, the concept ‘occurrence’ in a role as
conceptual temporal predecessor and the same concept ‘occurrence’
in a role as conceptual temporal successor. In other words that
definition specifies the knowledge that ‘an occurrence can occur
after another occurrence’. In general that statement can be expressed
in Formal English as:

occurrence can occur after a occurrence

Figure 90 gives a graphical representation of that possible sequence
relation.
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relation between
kinds of occurrences

193671 conceptual 1389 conceptual 193671
occurrence O temporal canoccuraftera termporal occurrence
predecessor, successar

Figure 90, Example of a recursive relation

Although the predecessor and successor are the same concept, the
definition of the kind of relation includes that the two roles may not
be played by the same individual occurrence. In other words it
specifies that an individual occurrence cannot occur before or after
itself.

Recursive relations

The <can occur after a> relation is a typical example of a recursive
relation. A recursive relation relates a concept (a specified kind) to
itself. In general relations between kinds of things may be recursive.
However, their meaning is not really recursive, because a recursive
relation means that an individual thing (instance) of the specified
kind can be related to another individual thing of the same kind, but
the individual thing cannot relate to itself.

The defined kind of relation <can occur after a> enables to make
similar statements about relations between two different subtypes of
occurrence.

For example, the kind of relation can be used to specify:

stop of motor can occur after a start of motor
activity can occur after a activity

Note that the general definition of such kinds of relations does not
put constraints on the related kinds of things, other than the
specification that they must be subtypes of the related kind. This
means that a stop can occur after another stop, etc. The definition
does not even specify whether the related occurrences are about the
same or about different things (e.g. the stop of the same or of
another motor). If such constraints apply, then constraining relations
shall be specified between the roles, as is illustrated for relations
between individual things.
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10.5 Realization of knowledge and requirements

Knowledge models and requirements models about kinds of things
can be used basically in two ways: as a basis for creating
information models about individual things and as a basis for
verifying whether individual things satisfy the requirements that are
expressed in requirements models.

The way in which knowledge models about possibilities in general
can be used for creating expressions of ideas that form information
models about individual things is illustrated below.

Assume that a data sheet of a centrifugal pump expresses a
requirement for three impeller diameters, as given in Table 40.

Minimum mm
Impeller
diam Actual mm
Maximum mm

Table 40, Expression of requirements on a data sheet

The requirements in Table 40 can be transformed into modeled
requirements as follows.

Name of‘left Name of kind of relation Name of I.‘lght hand
hand object object
centrifugal pump shall have as part a impeller
impeller shall have as aspect a minimum diameter
impeller shall have as aspect a actual diameter
impeller shall have as aspect a maximum diameter
diameter shall be quantified on scale mm

Table 41, Requirements for impeller diameters

The first line in Table 41 expresses that any individual thing that is
classified as a centrifugal pump shall have a part that is classified as
an impeller. Such a requirement is unconditional for all individual
things that are classified by the specified kind. Thus in this example
it applies for all centrifugal pumps. However, from a semantic
modeling perspective there is a condition. That condition is: ‘there is
an individual thing that is classified as a centrifugal pump’. If that
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condition is satisfied, then it has as consequence that the requirement
holds for the classified individual thing. Therefore we call such a
requirement a quasi-unconditional requirement. This is illustrated in
Figure 91.

quasi-unconditional

~ requirenent
1225

individual thing Hm

centrifugal pump

T

4959 T . T 1966 1 1191

____________ th 1 e
e his ,b{ shall have as part a

1190

ii-then-relation p——
1

_____________

S 5091 L
o """—;:‘I can be realized by a |—~**-"‘ -
v \ N
individual thing is classified as a } > unpeller

Figure 91, Realization/fulfillment of a requirement

In Figure 91 the requirement is presented at the right hand side of
the figure. The condition is modeled as an ‘if-then-relation’ that has
as component a ‘has as condition’ relation with the condition, which
is the existence of a particular kind of relation (in the example the
existence of a classification as a centrifugal pump). If that condition
is satisfied then it has as a consequence that the requirement is
applicable for the classified individual thing. The latter logically
means that there shall be a ‘has a part’ relation between the
classified individual thing and another individual thing and there
shall be an ‘is classified as a’ relation between that part and the
concept impeller. Thus software should be able to deduce what kind
of relation should result from a particular kind of requirement
relation. The upper ontology of Formal English therefore should
(and does) specify what kinds of relations satisfy what kinds of
requirement relations. Some examples are given in Table 42.
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Name of Name of Name of

left hand object kind of relation right hand
object
shall have as parta | can be realized by a has as part

shall have as aspect a | can be realized by a | has as aspect

Table 42, Realization of requirements

10.5.1 Design proposals

Based on requirements models as described above it is possible for
software to create design proposals.

For example, the above logic holds for the satisfaction of
requirements such as the requirement that an impeller shall have as
aspect a diameter.

Assume that, given the above requirements model, there is an
individual, called P-1 that is classified as a centrifugal pump (or as
one of its subtypes), as follows:

| P-1 | isclassified as a | centrifugal pump |

Then, based on the requirements that are expressed in Table 41 it is
possible that (design) software would make a proposal for a piece of
an information model for the individual P-1 as given in Table 43.

P-1 has as part I-1

I-1 has aspect D-1

I-1 is classified as a impeller

D-1 is classified as a minimum diameter

D-1 has on scale a value equal to | 500 mm

Table 43, Proposal derived from requirements

The proposal by software should enable a user to specify names for
the new things (e.g. I-1 and D-1) and for values, such as 500,
whereas the software could allocate UIDs for the new things.

Such a proposal can be presented to a user in various forms and lay-
outs.
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For example, it may be presented on a data sheet as follows:

centrifugal pump P-1
impeller
minimum diameter 500 mm

This presentation leaves the individual impeller and diameter
nameless and thus without an identifier and it uses the layout to
suggest relations of various kinds, such as the (correct) suggestion
that something that is called P-1 is classified as a centrifugal pump
and that some unnamed impeller is part of that pump and that the
diameter is possessed by the impeller (and not by the pump).

Similarly to derivation of design proposals from requirements,
software can also derive information models about individual things
from knowledge models. This follows from the fact that what is
required should be possible. Possibilities are prerequisites of
requirements. Therefore kinds of relations that express requirements
(being denoted by ‘shall have...’ relations) are subtypes of relations
that express possibilities (denoted by ‘can have...’ relations). This
means that the upper ontology of a formalized language should (and
in formal English it actually does) specify what particular kinds of
possibilities in general can be realized by individual ideas of related
particular kinds. Such possible realizations are formally specified in
the Upper Ontology section of the formal dictionary.

This is expressed for example as follows:

Name of Name of Name of
left hand object kind of relation right hand object
can have as part a | can be realized by a has as part
can have as aspect a| can be realized by a has as aspect

Table 44, Realization of possibilities

By inheritance follows that the requirements relations (as expressed
in Table 42) are also satisfied by the kinds of relations that are given
on the right hand side of Table 44.
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10.5.2 Verification of requirements

Knowledge can also be used for verifying whether a given
information model about an individual thing of a specified kind
satisfies requirements as expressed in a requirements model or
whether it uses the knowledge about possibilities for individual
things of such a kind.

The procedure to execute such a verification is the inverse process of
making a proposal. For example, for an information model of an
individual centrifugal pump P-2 it can be verified whether it has one
or more parts that are classified as an impeller and whether those
parts have specified minimum diameters, etc.

10.6 Properties and inheritance

Individual physical objects can have many aspects. Aspects of
individual physical objects are defined in Formal English as separate
(although dependent) individual things. Such individual aspects are
related to their possessor by a possession relation. In order to define
what they are, they shall be classified and qualified (or quantified)
explicitly.

For kinds of physical objects it can be specified that objects of such
a kind can have aspects of particular kinds. This kind of relation is
defined such that it reflects the reality an object of that kind in
reality (possibly but not necessarily) has such an aspect with a
particular value, but that that value might not be recorded. If it is
specified that objects of that kind (in a particular context) shall have
such an aspect, then it is meant that objects of that kind not only
have aspects of that kind, but also that the values shall be recorded.

Ideas that are expressed as relations between kinds of things
(knowledge, requirements and definitions) are inherited by subtypes
of the related things.

Consider for example the question “does P-1 have a diameter?”.
This does mean: is there an individual aspect that is possessed by
P-1, whereas the aspect is classified as a diameter and of which its
value is recorded?
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A database may for example contain relations that expresses that a
pipe can have a diameter. This can be expressed as is illustrated on
the first line of Table 45.

101 3 201 7
Left hand Name of Right hand UoM
object name kind of relation object name

pipe can have as aspect a diameter

P-1 is classified as a tube

tube 1s a specialization of pipe

P-1 has as aspect Diameter of P-1
Diameter of P-1 is classified as a diameter
Diameter of P-1 has on scale a value 20 mm

equal to

Table 45, Example of an inherited idea

All the subtypes of pipe, that have a specialization relation with
‘pipe’, inherit this idea! (Software that implements Formal English
shall ensure that this is the case). In other words all kinds of things
that are subtypes in the specialization hierarchy of “pipe” inherit that
they can have a diameter. On the basis of the third line in the above
table (which is a statement that is typically contained in the
taxonomic dictionary) a tube is a specialization (kind or subtype) of
pipe. As the second line specifies that P-1 is classified as a tube, the
inheritance rule implies that also object P-1 can have a diameter.
These ideas do not imply a requirement for recording a numeric
value according to a mass scale.

There are two options to make use of the first three lines:

1. When an individual object (such as P-1) is created and
classified, then software can propose to give it a property,
such as a diameter, whereas the property can be allocated to
the item by specifying a <has as aspect> relation.

2. When individual objects are classified and they have
properties, then those properties can be verified against the
kinds of properties of the kinds of things that are defined and
inherited from the specialization hierarchy of kinds of things.
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If the first line in Table 45 would have used the kind of relation
<shall have as aspect a>, then only the last three lines would satisfy
that requirement, because the classification and the quantification of
the diameter shall be as required.

10.7 Explicit modeling of roles

Roles that are required and played can be made explicit by replacing
one line in an Expression table by four lines: two lines describe the
roles required by the relation and the other two describe which
objects play those roles.

For example, the concept of ‘classification of an individual thing’
(by a kind of thing) is defined in the Upper Ontology section of the
Gellish Dictionary. That concept, which is represented by the phrase
<is classified as a>, is defined as being a kind of relation between an
individual thing and a kind of thing and by four additional defining
elementary ideas that specify which kinds of roles are by definition
involved in such a relation and which kinds of role players can play
a role of such a kind. Thus the definition consists of five lines in an
Expression table as is illustrated in Table 46.

101 1 3 15 201
UID of right .
Name of left UID of Name of kind of hand object gﬁgs (Onfal;;geh(t)fh :::::l
hand object idea relation (UID of kind 1
of role)
role)
is classified as a| 1.007.363 | is a specialization of 4.719 is related to a
s classified as a | 1.003.840 has by definition as 3821 clas51ﬁed.md1v1dual
first role a thing
is classified as a| 1.003.573 has by definition as 3.822 . Cl.a s.51ﬁer fqr
second role a individual thing
individual thing | 1.001.423 | canhave arole as a 3.821 clasmﬁiilli?gdwldual
kind 1.001.215 | can have arole as a 3.822 _ classifier for
individual thing

Table 46, Elementary ideas about roles in relations

Note 1: The right hand objects on the last four lines in Table 46 are
kinds of roles. Therefore, they are defined in the Gellish Dictionary
as concepts and thus they are part of the overall specialization
hierarchy of concepts, with their own branch with a hierarchy
(taxonomy) of kinds of roles.

242




Note 2: The fourth line in Table 46 defines that an individual thing
(i.e. a member of the concept ‘individual thing’) can have a role as
‘classified individual thing’, whereas the last line defines that a kind
(i.e. a member of the concept ‘kind’, which is ‘individual thing’ or
one of its subtypes) can have a role as a ‘classifier for an individual
thing’. This is compliant with the assertion that the relation <is
classified as a> is defined as being a subtype of ‘relation between an
individual thing and a kind of thing’, as is specified on the first line.

Kinds of roles can also be made explicit by mentioning them
explicitly as part of expressions. This is illustrated in Table 47.

101 1 3 15 201
Name of left hljrz::lllfk?rf](lie(f)tf) Name of kind of lljaal::;e(;:ifnl;;g:i; Name of right
hand object relation hand object

role role

D-1 classified D-1 | is classified as a clas]s)lf'lle rof door

door possessing can have as aspect height of a door height

door a
individual conceptual can have arole as | conceptually classified
thing player of a role a played role individual thing

Table 47, Explicit roles in expressions

Note that on a high level the kinds of roles that are involved in kinds
of relations are explicitly defined it the upper ontology of the
language definition. For example the roles ‘classified’ and
‘classifier’ are defined for <is classified as a> relations in general.
This makes that it is rarely useful to explicitly mentioning the
individual roles, such as in the case if the classification of D-1 on the
first line of Table 47. Also the kinds of roles on the third line are
already defined in the upper ontology of the definition of the concept
< can have a role as a>. Constraints are often only applicable for
kinds of things when they play a particular kind of role, thus in a
particular context. As those constraints are not generally applicable
for all things of a kinds, it is necessary to explicitly model their
kinds of roles in order to be able to put constraints on them. Thus,
explicitly modeling kinds of roles are important only to enable the
specification of constraints on their role players in that context. This
could for example be the case for expressions such as the second
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row of Table 47, when there are constraints on door heights put in a
particular ‘validity context’ (for the expression of validity contexts
see paragraph 8.2 and 13.4.

10.8 Information requirements

Requirements to deliver particular kinds of information for products
of particular kinds differs from requirements that specify the
required and allowed content of a database. In this paragraph we
describe how those different requirements can be expressed in
Formal English

10.8.1 Product information requirements

Organizations or individual persons can express requirements for
information that should be delivered by other parties, typically
together with the delivery of products or services. Such hand-over
requirements specify for example that for each product of a given
kind it is required that particular ideas shall be documented when
they are applicable for an individual product of that kind.
Conventionally such requirements are expressed as requirements to
deliver and fill-in some standard ‘data sheets’ or ‘spec-sheets’ for
each individual product of the appropriate kinds. This caused that
many organizations have developed standard forms for various kinds
of products.

A modern way of specifying such requirements is to specify that
such information shall be delivered in electronic form. This has
resulted in the conversion of paper standard forms into electronic
versions of those forms. However, those delivered electronic files
could usually not be imported directly in existing databases.

Requirements that are expressed as Formal English information
models that apply kinds of relations that express requirements enable
computer supported verification as well as import in existing
databases. Such information models are similar to knowledge
models that express possibilities. The main difference is that kinds
of relations of the type <can have ...> are replaced by relations of the
type <shall have ...>. For example, it might be specified that for each
compressor it is required to provide data for a database, such as its
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name, its capacity, its impeller as one of parts, and the diameter of
that part, as well as a data sheet (or a dedicated compressor data
sheet). This can be specified as follows:

equipment item  shall have as name a text string
compressor shall be described by means of a data sheet
compressor shall have as aspect a capacity
capacity shall be quantified on scale dm3/s
compressor shall have as part a impeller
impeller shall have as aspect a diameter
Etc.

Note that these requirements imply that for each individual thing of
the specified kind such a requirement holds.

Some of the requirement might not be applicable, or might only be
applicable for subtypes of the specified kinds. For example,
requirement for an impeller as part is not applicable for
reciprocating compressors, but only for centrifugal compressors.
This means that the third requirement cannot be satisfied for the
subtype ‘reciprocating compressor’. Therefore instead of the above
requirement for an impeller it is better to specify:

centrifugal compressor  shall have as part a impeller

In a conventional database it is not so simple to specify such
requirements for subtypes of kinds of things if each subtype is
represented by an entity type.

10.8.2 Specification of allowed values

In many cases there are constraints specified for the values that are
allowed as values for required or possible aspects. Those allowed
values can be either enumerated lists of values, also called pick lists,
or they can be specified as a range for numeric values.

For example:

model X  shall have a color from the list of model X colors
model X  shall have a height within range ~ 20-30 mm
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Note that these two expressions are not valid standard Formal English
expressions, because the kinds of relations are not in the dictionary,
because for maintaining flexibility the generic possession of aspect
relation is not subtyped according to its kind of aspect.

Typically, a constraint for values of an aspect of the specified kind is
applicable only in the context of a specified kind of possessor. In
other words, the pick list or allowed range is not applicable for every
value for an aspect of the specified kind. The constraint is only valid
for aspects of the specified kind in case the aspect plays a role of
being possessed by a possessor of the specified kind. In other words,
the constraint is applicable for a kind of intrinsic aspect (which is a
kind of role that is by definition played by an aspect towards a kind
of possessor).

Therefore, to express such a constraint it is required to define an
explicit kind of intrinsic aspect, which is a role that is played by the
specified kind of aspect and then specify the constraint on that kind
of intrinsic aspect, so that it is applicable only for aspects that play
such a role. The latter specification of the constraint defines that the
value for an aspect in such a role <shall be one of the> pick list
collection or range of aspect values. For example,

model X  shall have as aspect a color

This implies that there is a kind of intrinsic aspect, called ‘color of
model X’, which can be made explicit in an Expression table as
follows:

Name of left Name of kind of Name of kind or | Name of right
hand object relation right hand role hand object

model X | shall have as aspect a | color of model X color

Note that in the above Expression table the concept ‘color of model X’ is
not explicitly defined. An explicit definition of the kind of intrinsic aspect
is given by a corresponding alternative expression of the requirement that

model X  shall have as intrinsic aspect a color of model X

This requires an explicit definition of the kind of intrinsic aspect.
This is done by the expression of three assertions that relate it to the
concepts ‘intrinsic aspect’, ‘aspect’ and to the concept that is by

246



definition its possessor. Such a definition is expressed for this
example as follows:

color of model X is a specialization of intrinsic aspect
color of model X is by definition an intrinsic aspect
color of model X is by definition an intrinsic aspect of a model X

Once an intrinsic aspect is introduced it becomes possible to use it in
expressions of constraints, such as:

color of model X shall be one of the  model X colors

The definition of a (constraining) collection of enumerated
qualitative aspects is discussed in chapter 11. The definition of a
(constraining) range was described in paragraph 8.2.

10.8.3 Database information requirements

The specification or definition of databases conventionally includes
the creation of a data model (also called schema), typically starting
with a conceptual data model, which is converted in a logical data
model, which is then converted in a physical data model.

Usually, such a database development process implies the
specification of a specific language by defining the following
components:

o The specification of the terminology. For example in the form of
names of entity types, names of attribute types and allowed values for
attributes.

o The specification of the structure of the expressions. For example
in the form of table columns for the attributes, which imply relations
of particular kinds between those attribute types, and thus imply
relations between the attributes.

Note that the use of Gellish implies that such a language definition is
not required any more, apart from possible necessary extensions of
the Gellish dictionary.

The third component that need to be specified is:

o The specification of the information requirements and storage
possibilities.
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Note that a database definition does not specify that information
should be delivered or imported. Only, if some data are entered, then
it specifies which other related data can, or shall, or is allowed to be
entered as well.

Sometimes detailed requirements models, such as the above
requirements for compressor data, are used for definition of
databases. However, this results in databases that only allow for the
entry of such data. Generally databases will be designed for more
flexibility. For example to enable the entry of other equipment data
as well. However, that means that the above detailed requirements
are usually not reflected in a database definition for equipment data.

Furthermore, the above requirements model for compressor
information is independent of the structure of a database. For
example a database may have an entity type ‘compressor’ or a more
general entity type ‘equipment item’ and may or may not have a
separate entity type for ‘impeller’, etc.

Requirement models in Formal English can specify the detailed
information requirement only and do not need separate
specifications of database requirements and specifications of storage
capabilities, because Formal English expressions don’t have the
constraints that data structures of databases imply on the
information.

10.9 Conceptual correlations and physical laws

Conceptual correlations and physical laws are higher order kinds of
relations between kinds of things. They express knowledge that
aspects of particular kinds are correlated. Such a correlation usually
holds under the condition that such correlated aspects are possessed
by the same physical object or the same collection of interacting
physical objects.
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This is illustrated in Figure 92.

can be a correlation
between aspects ofa

730044 4922 2066 4740 790229
physical canbea conceptual can have as
[ object ]4_ correlation fora G correlation = parametera aspect

Figure 92, Correlated aspects of a physical object

For example, the physical law, as is discovered by Newton states
that F = m * a. This law correlates three kinds of aspects, a force F, a
mass m and an acceleration a, each of which should be possessed by
or operate on the same thing of a specified kind (in this case a
physical object).

The definition of a law should be implemented in an executable
program with the proper kinds of aspects that act as parameters in
the correlation. Such a program should be able to calculate the third
parameter value when two other parameter values are known, and it
should be able to verify whether the values are consistent in case all
parameter values are known.

In the example of the Law of Newton the three parameters are
specified in the model as follows:

Law of Newton is a qualitative subtype of x*y—z=0
Law of Newton has by definition as parameter a force
Law of Newton has by definition as parameter a mass
Law of Newton has by definition as parameter a acceleration
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Figure 93 presents a number of subtypes of conceptual correlation.

conceptualrelation 4698
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Figure 93, Conceptual correlations

The <corresponds with> relation is a binary correlation between two
qualitative aspects. It can be used for example to express that a kind
of substance water corresponds with a molecular weight of 18. Its
subtype <corresponds under normal conditions with> specifies a
correspondence under the condition that the pressure and
temperature is at ‘normal atmospheric conditions’ (also called a
normal state), which is defined as being room temperature (20
degree C) and average atmospheric pressure at sea level (1013
mbar). Thus we can state that water at normal conditions
corresponds with liquid. These examples can be expressed as
follows:

water  corresponds with mw 18
water  corresponds under normal conditions with liquid

Whereas mw 18 is defined as:

mw 18 is a qualitative subtype of molecular weight
mw 18 is by definition quantified on scale as 18

A relation between a qualitative aspect range and its boundary value
is a binary correlation. Such a boundary value is not defined as an
aspect of the range, because aspects cannot have aspects, but aspects
of physical objects can be correlated. For example, a boiling range
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of some mixture between 80 and 100 degC can be related to its
boundary values as follows:

80-100 degC  has by definition as lower boundary 80 degC
80-100 degC  has by definition as upper boundary 100 degC

10.10 Conditional consequence relations (if-then)

In paragraph 10.5 we stated that general requirements imply a
condition for a consequence. Such requirements were called quasi-
unconditional requirements.

There is another category conditional consequence relation: a
qualitative if-then-else relation (5775). This is a higher order relation
which use is illustrated in Figure 94.

relation between

i kinds ofthings
49721 |
has by definition & 4976
5227 iti
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; 5783 qualitative P— consequencea [ :
as option = ; - relation
has by definition if-then-else 4979 bet thi
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condition a alternative | | P
consequence a

Figure 94, Conditional consequence relation

An if-then-else relation can have one or more options for conditions
(that are expressed as relations). Such a condition is typically one of
the options for a value of an aspect. For example, a conditional
action (CA type-1) to switch a light on, under the condition that a
valve is open, can be expressed as follows:

CA type-1 has by definition as condition a option type-1
CA type-1 shall have as consequence a action type-1

Whereas option type-1 is a condition relation of the following kind:
valve position can have as option open

There can be more than one of such conditions, which means that all
such conditions have to be satisfied. Furthermore, there can be two
groups of conditions. The second group consists of ‘alternative
conditions’, which mean that either the conditions in the first group
or the conditions in the second group may be satisfied.
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If the condition(s) are satisfied, then a consequence of a particular
kind (action type-1) shall be performed. An example of an action
type-1 might be: ‘switch a light on’. Such an action type is a kind of
occurrence, which can be specified in further detail as is described
before.

If the condition(s) are not satisfied it might be the case that an
alternative kind of action should be performed (an else-clause).
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11 Relations with collections

Collections of things should be distinguished from kinds of things. A
kind is defined independent of its number of members. A collection
has by definition a particular number of elements at a particular
moment in time and its number of elements may vary over time.
Collections may consist of things that are collected and brought
together, but may also be as-if brought together. Collections can be
unordered or ordered. Examples of kinds of ordered collections are
as lists and tables.

11.1Relations between single things and collections

We can distinguish three categories of collections: collections of
individual things, collections of kinds of things, and mixed
collections that include individual things as well as kinds of things.

Figure 95 presents the hierarchy of relations between a single thing
and one of these three categories of collections.

2850
relation

relation between 5322
a single thing and a collection

2846

N is collected in

(general) callection relation

1227| being an element in
is an element of a collection of individual things

is an element in 473 being a concept in
collection of concepts | a collection of kinds of things

] 5645
=} is a complete collection

for the composition of
Figure 95, Relations about collections

The general collection relation (2846) in Figure 95 can be used to
specify that some single thing is an element of any of the three
categories of collections, its first subtypes specifies that an
individual thing is an elements of (1227) a collection of individual
things. The second subtype specifies that a kind of thing is an
element in a collection of kinds of things (4730).
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The other relation between a single thing and a collection specifies
that the collection consists of all elements that are required to
compose a particular individual thing.

Figure 96 illustrates how these kinds of relations can be applied.

7 ) — 7 _
¢ 1227 o0 _a_smgle_
is an element of | individual thing
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of individual 1330
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is classifiedas a individual things
. 4843 ( 730067
(O—{ eachofwhich > individual thing
\ ) is classifiedas a

classification of each elementin a collection
E.g.: Collection-1 <each of which is classified as a> M6 bolt

Figure 96, Individual things in collections of individual things

The left hand side of Figure 96 represents an individual collection
that is composed of individual things. This is specified by the
statement that it is classified as a collection of individual things. A
number of elements can be collected into that collection. The
statement that an individual thing is an element of a collection of
individual things is expressed as in the following example:

Car-123

Instead of classifying each individual component in a collection of
individual things, it is also possible to collectively classify each
element in a (homogeneous) collection by one statement as is
illustrated in the last line of Figure 96. This enables to work with
classified elements in a collection, although the individual things
that make up the collection may not be identified individually.

is an element of Company X car fleet

A collection of individual things may have aspects, such as a
‘number of elements’ or a (total) weight, just as single individual
things can have aspects. Furthermore it can be specified that a
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collection is complete and sufficient to be used to compose another
individual thing.

For example, the collection of components that make up an
assembly. This is illustrated on the second line in Figure 96.

Figure 95 also presents a relation that specifies that a kind of thing (a
concept) is an element of a collection of kinds of things (4730). For
example a company may define a collection of kinds of categories to
list the kinds of things that they keep in stock. Then the idea that a
kind of thing (such as spare part type ‘xyz’) is an element of the
collection of kinds of stock items is expressed as in the following
example:

Xyz is an element in collection of concepts kinds of stock items

There are also other kinds of relations available that specify
collective relations for each element in a collection. For example:

o A particular collection of information items consists of
information items, <each of which includes information about>
(5047) some object, whereas the object can be either in individual
thing or a kind of thing.

o A collection of concepts consists of concepts, <each of which is a
subtype of> (5095) a particular supertype concept. This specifies that
the elements in the collection of concepts all are subtypes of the
supertype concept.

11.2 Relations between collections

Relations between collections in general (4748) apply to all three
categories of collections: collections of individual things as well as
collections of kinds of things and mixed collections.

In set theory relations between collections are usually taken as
operations on collections. Strictly speaking this could be interpreted
as a change of state, so that the state before execution of the
operation differs from the state after execution of the operation. This
would mean that we can distinguish between the state of a collection
before and after the operation. This might be described as a change
of state process of actions that take place in time, whereas the
number of elements in the collection varies over time. However, in
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most cases a time that an operation takes place is not specified and is
not meant to be specified. Thus usually an ‘operation’ describes a
state after execution of an operation.

Furthermore, relations between collections are usually higher order
relations, which involve three or more collections. Therefore, in
general those relations shall be expressed in a similar way as
correlations are expressed, which means that multiple binary
relations are required to express one higher order relation.

Unions of collections

For example a union (operation or calculation)
. between collection A and collection B and possibly

more collections delivers a collection C (often
denoted as C = A U B). In Formal English such a
union operation is described by multiple binary
statements, one for each collection that is united in a
uniting collection. For example, assume that it holds
that two collections (A and B) are united in a third
one (C). This can be expressed as follows:

A contains elements that are united in C
B contains elements that are united in C

Then C contains all elements that are present in A as well as those
that are present in B. It is a general rule in set theory, that if the
united collections (such as A and B) contain (partly) the same
elements, then the uniting collection (C) will only contain such items
once (thus an element will not be duplicated, as an element can only
exist once). Therefore potential duplicate relations between an
element and collection C shall be eliminated. For example, assume
that:

E-1 1s an element of A
E-2 1s an element of A
E-2 1s an element of B
E-3 is an element of B

Then the above union statements imply that collection C consists of
the elements E-1, E-2 and E-3. Note however that the union
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statements do not imply that new statements are generated to express
in an explicit way that E-1 is an element of C, etc. Thus, the union
statements imply that during a search for the elements in C, the
software should also search for and present the elements in A and B
(while preventing to present duplicates).

It may also be that elements are explicitly stated to be an element of
collection C, whereas those elements may be or may not be also
elements of A or B. For example:

E-3 is an element of C
E-4 is an element of C
E-5 is an element of C

Because in this example E-3 is also an element of B directly, it will
nevertheless appear only once in collection C.

Furthermore, it is possible to make an exception from being
collectively declared to be united. This can be expressed by stating
that an element is excluded from being collectively declared to be
united in a collection. For example:

E-1 is excluded from C

This statement overrules the consequence of the first union
statements, so that E-1 is not an element of collection C although is
an element of A and was initially stated to be included in C. Such an
exclusion does not overrule an explicit statement about being an
element of the collection.

Subsets and supersets of collections

P A subset-superset relation is a binary relation
N between (two) collections that specifies that the
- B \ elements in a collection (A) are a subset of the
l-. ﬁ \ | elements in another collection (B). This is
/ / independent of the question whether the
\‘-\Q}_..«/ " elements in A and B are explicitly identified or
declared to be elements of the collections.
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For example, it may be that collection B is populated, so that its
elements are explicitly declared to be an element of B. Then assume
that it is stated that

A 1s a subset of B

Then this statement only means that the elements of collection A are
also elements of collection B, without specifying which elements
belong to collection A.

The inverse statement is that:
B  isasupersetof A

Note that the above union statement, which states that the elements
of A are united in C does not necessarily imply that C is a superset
of A, as some elements may be excluded from being collectively
included.

Intersections of collections

Intersection of sets as defined in set theory is a
relation between a collection of sets and an
intersection collection that indicates that the
elements of the intersection collection consists
of all the elements that are member of each of
the intersected collections and no others.

Thus to express an intersection (an intersecting
collection) I of the collections A, B and C it is
required to first define a collection of
collections (CC). That collection has three
collections as elements. This is expressed as

follows:
A is collected in CC
B is collected in CC
C is collected in CC

Then is can be specified that

CcC are sets with as intersection [
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Differences of collections

A difference between sets, also called a relative
complement of sets, as defined in set theory is a
correlation between three collections and is
usually expressed as A\B = C (or also written as
A - B =C). This can be expressed as follows:

A contains elements that are united in C
B contains elements that are subtracted from being united in C

The definition of the subtraction relation (<contains elements that
are subtracted from being united in>) specifies that it overrides
statements that specify that elements are united in. This makes that
the statements are independent of the sequence in which they appear
in a database.

There is another kind of difference that can be expressed as a binary
relation. It is a relation between a collection of collections and a
resulting collection that indicates that the elements of the resulting
collection consist of all the elements of the united sets except for the
elements in the intersection of the sets. In other words the resulting
collection consists of the elements that appear in only one of the
compared collections.

For a difference of two collections A and B the difference can also
be expressed as (A\B) U (B\A).

But using a binary relation, starting from the same set of sets CC as
above, we can express:

CC are sets with as difference D

In this example collection D is a collection of elements that are
elements of A, B and C, but excluding the elements that are in more
than one of A, B and C.

Note that for two collections A and

u . .
B this relation expresses the same as
A a ‘symmetric difference’ between A
and B as is defined in set theory.
AAB

However, for more than two
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collections the resulting collection differs from a symmetric
difference.
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12 Integration with natural languages,
algorithms & documents

A database or message header specifies in which (formal) natural
language the content it expressed. In addition to that, each
expression (each line in an expression table) may contain a
statement about the language (and the language community) of the
name of the left hand object, which can deviate from the language of
the whole database or message.

12.1 Natural language text

The language of a whole expression also determines the natural
language that is used for the textual description or definition of a
defined object (see expression component 4 and 65 in par. 13.4.3.
Those descriptions can also be used to relate the concepts in a
formal English expression model to natural language text. This
enables that the contents of documents can be incorporated in a
model, by including complete sentences or paragraphs in a model,
without the need to explicitly model those sentences in detail.

This is illustrated in the following table.

UID of
left Name of left
hand | hand object

UID of Name of UID of Name of
kind of kind of right hand | right hand | Full description

. relation relation object object
object
shall be
130,069 | compressor | 5,298 compliant 106 AP156?1’7] par.
with e
The purchaser and
the vendor shall
mutually
determine the
measures that
API 617 par. isa must be taken to

106 1,726 970,007 |requirement| comply with any
governmental
codes, regulations,
ordinances, or
rules that are
applicable to the

equipment.

5.3.1 qualitative

Table 48, Incorporation of natural language text
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Table 48 illustrates that any compressor shall be compliant with the
API 617 paragraph 5.3.1 standard (according to some party or
standard, which is specified in the ‘validity context’). On the next
line the text of that paragraph is specified in natural language
English. In this way each separate requirement from such a standard
can be incorporated in a formal English semantic model and related
to the component to which it applies!

In addition to that it might have been specified that the paragraph is
an integral part of the API 617 standard, whereas also the sequence
of the paragraphs can be modeled as well as the distribution of
paragraphs over chapters, etc. In that way whole documents can be
modeled and later composed from the models. This simplifies
maintenance of documents, especially of coherent sets of
requirements documents.

12.2 Programming languages (algorithms) and
formulae

In a similar way it is possible to incorporate expressions that are
encoded in programming languages. This can be used to relate
objects or activities to algorithms or mathematical formulae. The
qualification of the algorithm or formula should provide sufficient
information about the encoding system that shall be used to interpret
the expression. This can be applied for example for the computer
interpretable storage of formulae or algorithms that describe kinds of
shapes (geometric objects).
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12.3Files with documents, drawings, etc.

A model can also incorporate a reference to an external electronic
file, as is illustrated in Table 49.

UID of UID of UID of

left Name of left | - - .| Name of kind of right Name of right hand Full

. kind of . . ..
hand | hand object . relation hand object description
. relation .
object object
shall be compliant

130,069 | compressor | 5,298 with 101 API 617

101 API 617 1,726 is a qualitative 910,137 | standard specification

101 API 617 4,996 | is presented on 102 API 617.pdf

102 API 617.pdf | 1,225 | isclassified asa | 493,748 pdf file

http://
102 API 617.pdf | 1,227 | is an element of 103 www.gellish.net/
dictionary
http://www.
103 gellish.net/ | 1,225 | isclassifiedasa | 492,017 directory
dictionary

Table 49, Integration of document files and drawings in Formal
English models

The names of things may also include file extensions, such as pdf,
preceded by a dot, access paths for directory addresses and internet
addresses (URL’s or URI’s). This enables software to recognize file
formats and storage locations and to retrieve as file, launch an
appropriate software application and thus display the content of the
file or database in the application.

Note that a reference file can contain documents, drawings,
databases, and any other binary encoded content.
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13 Expression components

Expression components are the components that make up an
expression conform the Gellish syntax. Correct interpretation of
expressions require not only the components that express the main
idea, but also those that provide the appropriate context. Therefor,
the expression of each main idea should be accompanied by an
appropriate number of contextual facts and it is insufficient when a
semantic information model only includes expressions of core ideas
(the topics with the intentions of the expressions). That additional
contextual information implies that each core idea shall be related to
a number of contextual information components. The following
paragraphs discusses those expression components and the relations
between them. Precise definitions of the expression components and
kinds of relations between them are provided in the Gellish Syntax
document (Ref. 4).

13.1Expression of core ideas

A core idea is the bare idea that is intended to be expressed, without
its context and irrespect of being an opinion or fact or imaginary
state of affairs. The following relations are required for the
expression of a core idea:

o A binary relation that relates two things that are involved in a
main idea.

The two related things are: a player of the first role that is required by
the relation (usually' the left hand object) and a player of the second
role that is required by the relation (usually the right hand object). The
related things are represented in the relation by their respective unique
identifiers (UIDs).

o A classification of the relation.
This is a statement that classifies the relation by a (standard) kind of
relation. This contextual fact is represented by a pair of things: the

10 In Formal English expressions it is allowed that inverse phrases for
kinds of relations are used. However, implementation such as in Ideas
tables may constrain the use of inverse phrases. In constrained tables the
left hand object is always the player of the first role.
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UID of the idea and a UID of the kind of relation that classifies the
relation.

o A classification of a quantification relation by a scale (a unit of
measure) — when applicable.

This is called a contextual fact that classifies a quantification relation
by a (standard) kind of scale (also called a unit of measure). This
contextual fact is represented by a pair of things: the UID of the idea
and a UID of the kind of scale that classifies the relation.

o A qualification of the expression by the intention with which the
expression is communicated.

This is a contextual fact that expresses with which intention the main
idea is communicated. For example, it may express that the idea is
communicated as an assertion or as a denial, a confirmation or a
question. (default = assertion)

o Optionally: an extent of being the case.

This specifies qualitatively or quantitatively as a fraction or
percentage on a scale to which extent a statement is the case.
Especially the fraction of a whole that is occupied by a part or the
fraction of a mixture that is classified by the specified kind of
substance.

Any expression of a core idea in a formalized language should
therefore consist of the above relations, whereas those relations
relate six component. Those expression components can be
represented by UIDs that are independent of any natural language.
The components are presented in Table 50.

C((;gllﬁxfl;]t)gl) Description of object
1 UID of a idea
2 UID of a left hand object
60 UID of a kind of relation
15 UID of a right hand object
66 UID of a scale (unit of measure)
5 UID of an intention

Table 50, The core elements of an expression
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When those six component are arranged in a syntactic structure that
defines the above describes relations between them, then that
structure forms an expression. Thus the expression of a core idea is
an arrangement of six components, consisting of six UIDs, in a
syntactic structure.

13.1.11deas table core

A tabular syntactic structure is a possible implementation of an
expression as the relations between the columns in the table define
the relations between the components of the expression. Therefore
the core of an Ideas table can represent the above expression
components and their relations and thus enables the expression and
interpretation of the meaning of main ideas. That core of an Ideas
table is therefore defined by six columns, identified by a column ID.
Each row in an Ideas table represents a combination of the six
components, each represented by its own UID.

For example, Table 51 is a core of an Ideas table that illustrates the
expression of idea 201.

1 2 60 15 66 5
UID | UIDofa | UIDofa| UIDofa | UIDof | UID of
of an | left hand | kind of | right hand | a UoM an
idea object relation object intention
201 101 5026 102 570423 | 491285

Table 51, An Ideas table with the identification and expression
of one core idea

Each object that is represented in column 2 of Table 51 is called a
left hand object and denotes the player of a ‘first role’ in a relation,
as defined by the definition model of the specified kind of relation.
By analogy column 15 denotes a right hand object, which is the
player of the ‘second role’ in the relation of the specified kind.

The UIDs in Table 51 represent objects (things). The terms (names,
etc.) of those objects in natural language are specified in expressions
of separate contextual facts, which are called naming relations, as is
specified in the paragraph 13.5. Those naming expressions are
typically provided in a Naming table (see par 13.4.2). Replacing
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UIDs or accompanying them by columns with terms that denote the
UIDs delivers a human readable equivalent for Table 51.

Usually a Naming table will contain various synonyms terms for the
objects that are denoted only by a UID in an Ideas table. Therefore,
in principle it is necessary to record which term is used in which
expression. This can be done by creating a separate Term Usage
table that contains a specification of which terms are used for each
UID that appears on a row in an Ideas table. However this issue is
solved by using integrated Expression tables (see par. 15).

13.2 Expression of roles of role players

Each object that is involved in a relation plays a role of a particular
kind in that relation. Thus each binary relation implies two roles
played by the related objects.

Those roles often may remain implicit in expressions, because the
kind of relation implies particular kinds of roles. For example, the
kind of relation <is a part of> (a composition relation) implies the
kinds of roles ‘part’ and ‘whole’. The definition of those kinds of
roles follows from the definition of the kinds of relations (as
specified in the TOPini section of the Dictionary).

In some cases it is required to model those roles explicitly. This
especially holds for the modeling of constraints, when those
constraints are applicable only when objects of a kind play a role of
a particular kind.

Roles can be made explicit by modeling a role as a separate object in
either of two ways:

o By treating a role in the same way as a role player. This means that
if an object plays a particular role in a relation, that fact is explicitly
expressed by two relations:

* A relation between the object and the role that is played
by that object.

e A relation between a relation and the role of the kind
that is required by that relation.

o These kinds of expressions of ideas about roles can be stored in the
same way as all other expressions of ideas. It only requires the
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recording of all the roles as separate objects and explicit classification
of those roles and defining kinds of roles in their own subtype-
supertype hierarchy (taxonomy).

o By inserting a left hand and right hand kind of role in an orderly
expression. This implies that for each main idea four contextual facts
are defined: two that specify that the objects play roles of those kinds
and two that specify that those kinds of role roles are subtypes of the
kinds of roles that are by definition required by a relation of such a
kind.

In a tabular form this means that an Ideas table is extended with two
additional columns; one for the left hand kind of role and another for
the right hand kind of role, whereas also the names of the kinds of
roles need to be defined in a Naming table. The kinds of roles
classify the played roles and are implied subtypes of the kinds of
roles that are required by the kind of relation. This is implemented in
an Ideas table as follows:

1 2 72 60 74 15 66 5

UID | UID of | UID of | UID of | UID of | UID of | UID of |UID of an
ofa | aleft | aleft | akind | aright | aright | ascale | intention
idea | hand hand of hand hand
object | kind of | relation | kind of | object
role role

201 101 301 5026 401 102 | 570423 | 491285

Table 52, Ideas table core extended with explicit roles

Thus the explicit modeling of the roles implies an extension of the
core of a ideas table with the following columns:

Component ID Description of object
(column ID)
72 UID of a left hand kind of role
74 UID of a right hand kind of role

Table 53, Extension of the core of an Ideas table with roles

13.3 Expression of queries

The modeling of a dialogue (being a human activity) typically
requires modeling the various communication activities as separate

268




occurrences. The questioning, answering, confirmation, etc. are
modeled as activities that are classified by kinds of activities.
However, with or without modeling the dialogue itself, it is also
required to model a question or query as a message. The general
model of a query message is discussed in par. 2.6.

The two components of an expression that express contextual facts
are specified in Table 54.

Component
ID Description of object

(column ID)
80 Left hand string commonality
81 Right hand string commonality

Table 54, String commonality columns in a Query table

These components imply additional relations between these
components and the left hand term (character string) and right hand
term respectively that should be interpreted from the syntactical
structure of the expression.

A tabular implementation enables to interpret the relations from the
definition of relations between the columns. Therefore, a query can
be implemented as a Query table. Such a Query table is an
Expression table that contains two additional columns (80 and 81) in
which the commonality criteria for the left hand and the right hand
term can be specified.

13.4 Expression of contexts

A proper interpretation of the meaning of an expression (or
proposition) requires not only that the main idea (the topic) is
expressed with the terms in the user preferred language and
language community, but it also requires that the expression
includes information about the context in which an expression is
made. Therefore, semantic modeling not only requires expressions
of the main ideas themselves, but it also requires that each
expression is accompanied by additional expressions of facts about
the main fact. Such additional facts are called 'contextual facts' about
a main idea.
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Contextual information is also required for the management of
information. For example, for proper interpretation as well as for
proper information management it should be recorded who has
created an expression, when that was done, what the status of the
expression is, since when it is outdated or replaced by another
expression of an idea, in what language it is expressed, etc.

Each expression of an idea shall be accompanied by such contextual
facts. Standard kinds of contextual facts are discussed below.

13.4.1 Language and language community contexts

Facts and idea’s are basically natural language independent.
Therefore in a semantic model that uses UIDs to represent things
and ideas, also the expressions are basically language independent.

However, terms (names) of things are language and language
community context dependent as was discussed in par. 5.1.

To relate language independent UIDs to natural language and
language community dependent terms (names) it is necessary to
specify naming relations.

Every relation between a term (including a phrase) that is used in
any expression and the thing (UID) that is denoted by that term as
well as the relations with the language and language community
contexts form a collection of contextual binary relations or triples
(also called a ‘graph’) about the expression.

The components of an expression that represent the language and
language community contexts are given in Table 55.
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C(Oc l;g‘::r;;)l)l) Description of object

69 UID of a natural language

71 UID of a language community

101 Term (name, phrase, abbreviation, code,
URI, number or symbol)

60 UID of kind of relation

2 UID of a thing that is denoted by the
‘term’ in the language, as originated in the
language community

Table 55, Components for the expression of language and
language community context

The relations between these components of an expression (as
described in par. 5.1.2) are implemented through the syntactical
structure or format of the expressions.

The definitions of the language and language community are given
in the following paragraphs. The definition of the components 101,
60 and 2 were already provided in par. 13.1)

13.4.2 Naming table

In a tabular implementation the relations between the components
are defined by the definition of the relations between the columns in
the table. For example, each of such a collection of contextual
relations can be represented in tabular form as one Naming table,
provided that the relations between the columns in that table
represent the kinds of relations for that collection.

Such a Naming table therefore has the following table header:

69 71 101 60 2
UID of UID of a Term | UID of kind UID of
a language of relation | a named thing
language community

Table 56, Header of a Naming table
The columns 69, 71 and 101 together form a unique key.
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The columns have their own column ID’s that uniquely identifies the
columns, independent of a natural language. This enable that the
column titles are free text descriptions that can vary per language or
user preference.

69 54 71 16 101 60 2
UID of the | Name of| UID of the |Name of the Term |UID/Name of kind UID of
language of the language | language named

the term | language| community | community (name) of relation thing

910036 English 193263 | engineering| pump | 5117/is a name of | 130206

910037 Dutch 193263 | engineering| pomp | 5117/is a name of | 130206

910038 German | 193263 | engineering | Pumpe | 5117/is a name of | 130206

910036 English 190668 linguistics | German | 5117/is a name of | 910038

910038 German | 190668 linguistics | Deutsch | 5117/is a name of | 910038

910037 Dutch 190668 linguistics Duits 5117/is a name of | 910038

assembly

. 5117/is a name of 1190
relation

910036 English 193259 ontology

910036 English | 492015 Gellish __|is a part of| 981/is a synonym of| 1190

910036 English | 492015 Gellish | has as part[1986/is an inverse of| 1190

910036 | English | 492015 Gellish —isawhole o co o inverse of| 1190
alternative of

Table 57, Naming table with UIDs and names of a concept in
various languages

The use of a Naming table is illustrated in Table 57 on three
examples:

1. The concept represented by UID 130206 is denoted in English as
pump, in German as Pumpe and in Dutch as pomp. The language
community where these names originate is ‘engineering’. Table
57 illustrates how those various names in those three languages
are allocated to the concept that is denoted by UID 130206.

2. Table 57 also illustrates an example of how names of languages
differ in various languages. For example, the name of the German
language, expressed in German is Deutsch and in Dutch it is
Duits. Table 57 illustrates how the various names of the German
language are related to the concept that is denoted by UID
910038.

3. The third example gives the names a kind of relation, its Formal
English phrase as a synonym, its inverse Formal English phrase
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and an alternative for the Formal English phrase.

Table 57 should be interpreted as follows:

The table has two header rows. The numbers in the first row,
69, 54, 71, 16, 101, 60 and 2, are standardized natural
language independent identifiers of the table columns. They
refer to standard columns in Expression tables as is described
later in this document. The texts on the second line are not-
standardized names of those columns.

The second and the fourth columns (54 and 16, in red) are
added for clarification, but are semantically superfluous and
are not part of a standard Naming table.

The UID of the language in the first column (69) specifies
the language in which the term in column (101) is expressed.
Thus the number 910036 on the first row, which is the
Gellish UID of the English language, specifies that the term
‘pump’ is an English term for concept 130206. Similarly,
UID 910037 denotes the Dutch language and UID 910038
denotes the German language.

Note that the fourth line specifies that the term ‘English’ is
the English name of the language that is represented by the
UID 910036.

Column 60 denotes a UID of the kind of relation. In order to
facilitate the readability of the example table the name of that
kind of relation is given in addition, although that name is
superfluous and does not belong to a Naming table. Note that
the UID of the kind of relation could also indicate other
kinds of relations, such as ‘is an abbreviated name of” or ‘is a
code for’ and some other variations. If the UID is 1986, then
the ‘name’ consists of a phrase that denotes that in a relation
the left and right terms are switched to express the same idea
as when other phrases are used.

The columns 69, 71 and 101 together form a unique key for
the table.
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Not only all dictionary concepts, but also each user-defined concept
or individual thing (user defined object'') that is used in Formal
English expressions of main ideas shall have a Gellish UID. Each
user defined object UID shall be unique and shall be allocated
conform the rules described in par. 5.1.1.

13.4.3 Prime contextual facts

Each main idea is accompanied by a number of prime and secondary
contextual facts. Together that collection of facts is called the
expression context, which is a set of kinds of contextual facts. Each
of the contextual facts (which are specified below) is expressed as a
binary relation that relates a pair of objects and a classification of
that relation. The classification relation and the classifying kind of
relation that classifies the relation may remain implicit in
implementations (for example in a tabular implementation where
they are defined by the definitions of the columns and the relations
between the columns that make up an expression). However it
depends on the kind of implementations whether the contextual
relations can be interpreted from these relations and thus whether
they should be made explicit in order to enable semantic
interpretation. The latter is for example the case in RDF
implementations.

The objects that are specified in the following table imply relations
that express prime contextual facts. Definitions of these contextual
facts as well as those in the next table are given in the following
paragraphs.

C(zgigzﬁflg);l) Description of object
44 A pair of left hand object cardinalities.
45 A pair of right hand object cardinalities.
30 A UID of an extent to which a main idea is the
case
32 A UID of a probability of the main idea
34 A UID of a location where the main idea is valid
76 A UID of the accuracy of a quantification.

11 In this document the unqualified term ‘object’ is used as synonym for
the term ‘anything’.
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70 A UID of a pick list for the qualification of
aspects.

19 A UID of the validity context for an idea.
A partial definition in natural language of a

65 e :
concept or individual thing.

4 A full definition in natural language of a concept
or individual thing.

42 A textual description of a main idea.

14 Remarks on the expression of a main idea.

8 Approval status of the expression of a main idea.

Table 58, Prime contextual facts

The definitions of these components of an expression are given in
the following paragraphs.

13.4.4 Secondary contextual facts

The secondary contextual facts are facts that may contribute to the
semantic interpretation of the ideas, but are mainly added for
administrative reasons. They include the facts in the following table.

C(zziﬂf;flﬁ)?) Description of object

24 Reason for latest change of status.

67 UID of the successor of the idea, in case it has the
status ‘replaced’.

12 UID of creator of idea.

9 Date-time of start of validity of the idea.

23 Date-time of start of availability of the expression.

22 Date-time of recording of expression. (optional)

10 Date-time of latest change of the expression.

6 UID of author of latest change of the expression.

78 UID of addressee of the expression.

13 References.

53 UID of the expression of the idea. (Line UID)

50 UID of a collection of ideas to which the idea
belongs

0 A sequence in which the expressions are presented.
(Presentation sequence)

Table 59, Secondary contextual facts
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Uniqueness constraints are implementation constraints that intent to
prevent that a database contains identical expressions in which also
the contextual facts are identical. It depends on the scope of a
database which expressions including context are considered to be
identical. For example, in an extreme situation two identical
expressions about the same idea, thus semantically having the same
meaning, but expressed by different persons (originators), may be
considered to be two different expressions in one context, whereas
they are considered to be the same expression in another context.
This means that it might be required to add the originator to the
uniqueness constraint. Similarly, when a requirement is stated to be
valid in multiple validity contexts, then this means that there are
multiple requirements, each with its own ‘idea UID’. This implies
that the ‘validity context UID’ should be added to the second
uniqueness constraints.

13.5 Naming relations for objects in expressions of
ideas

In principle, every UID that is used in an expression of a main idea,
or in an expression of a contextual fact, is denoted in a human
readable expression by a term (name, etc.), or by more than one term
in case of synonyms. The terminology is recorded in naming
relations between UIDs and terms, as described in paragraph 5.1 and
13.4.1.

In Formal English Databases all the naming relations of UIDs can be
recorded in a separate Naming table. However, it is also possible
that they are included in an integrated Expression table (see par. 15).
In an integrated Expression table the UIDs as well as the terms are
included in the table itself.

Table 60 specifies all the names that imply naming relations
(expressions of additional contextual facts) that are required to
allocate names (terms) to the UIDs that are used to express main
ideas and contextual facts.” Note that ‘name’ stands for a character
string that can be a term, a code, a phrase, a number, a URI, etc.
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Component ID

Description of object

(column ID)

101 The name of a left hand object.
201 The name of a right hand object.

3 The name of a kind of relation.

7 The name of a scale (UoM).

54 The name of a language.

16 The name of a language community.

73 The name of a left hand role.

75 The name of a right hand role.

43 The name of an intention.

31 The name of an extent.

33 The name of a probability.

35 The name of a location.

12 The name of an author of latest change.

77 The name of an accuracy of quantification.
20 The name of a pick list.

68 The name of a collection of ideas.

79 The name of an addressee of the expression.

Table 60, Naming columns in an Expression table
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14 Subsets of expression components &
context

A formal English message or database may consist of the full set of
expression component and contextual facts as defined in this
document. It may also consist of a subset of them.

The definition of these subsets implicitly also define subset
Expression tables.

Depending on the application, users may decide to use a flexible
subset or one of the predefined standard subsets of the collection of
contextual facts.

The following subsets of expressions are defined, each with its
equivalent subset Expression table:

e Subset Minimum subset
e Subset Flexible subset
e Subset Nomenclature
e Subset Dictionary
e Subset Taxonomy
e Subset Product Model
e Subset Business Model (recommended)
e Query tables
These standard subsets are defined in the following paragraphs.

The subsets require the presence of all elements that are specified for
the chosen subset and the elements shall be arranged in the indicated
sequence, with as only exception the Flexible subset.

The default subset is the Business Model.
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14.1Subset: Minimum subset

A Minimum subset is intended to express messages in nearly natural
language, while still using a Gellish formalized language dictionary
and the standard Gellish formalized language kinds of relations.

A Minimum subset has limited expression capabilities and therefore
only suitable for usage in simple applications in small communities.
For example, the subset does not provide a mechanism for the
explicit distinction between homonyms nor for the explicit
distinction between languages. It is neither suitable to express
intentions such as questions, denials, but is only intended to express
statements. It does not provide for contextual facts, such as an
approval status, source and timing information about the expressed
ideas.

Users of Minimum subsets should ensure that the terms (names) of
objects in the messages are unique or that the distinction between
homonyms is apparent from the context in which the terms are used
and that synonyms are explicitly declared to be synonyms.

A Minimum subset consists of only the core of an expression of a
main idea, expressed in formalized natural language terms. Such a
minimum subset consists of the following three expression
components:

Component |Description
ID

(column ID)
3 A name of a kind of relation (= formalized language

phrase)

101 A name of a left hand object

201 A name of a right hand object

Table 61, Minimum subset

Minimum subsets may be expressed (implemented) in various ways
(syntactic structures or formats). For example in the form of
functions, such as:

o Relation type (left hand object, right hand object)
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Another implementation may be in the form of a Minimum subset
Expression table, which contains only the three columns: 101, 3 and
201. An example of such an Expression table is:
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101 3 201
Name of left hand | Name of kind Name of right
object of relation hand object
the Eiffel tower is located in Paris

Table 62, Minimum subset Expression table

Minimum subset expressions are triples of expression components
that are directly compliant with the Notation 3 RDF (N3) form of the
RDF standard of the World Wide Web Consortium (W3C).

Note: A more elaborate Expression table with additional columns
can also be represented as collections of triples and can also be
expressed in RDF or Notation 3 RDF as is described in the last
chapter.

Minimum subset+ is a in extension of Minimum subset with the idea
UID, which enables the management of ideas.

14.2 Subset: Flexible subset

A Flexible subset is a subset that contains at least the non-optional
expression components. The non-optional components are: 2, 101, 1,
60, 3, 15, 201, 8, 9 and 10 as described in Table 63.

Component | Description
ID
(column ID)
2 UID of left hand object
101 Name of left hand object
1 UID of main idea
60 UID of kind of relation
3 Name of kind of relation
15 UID of right hand object
201 Name of right hand object
8 Approval status
9 Date-Time of start of validity
10 Date-time of latest change
etc Free choice of additional columns (in any sequence)

Table 63, Minimum expression components for flexible subset
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Note: Expressions that consists of more than three expression
components can be represented as collections of triples. For
example, when they are expressed in RDF or Notation 3 RDF
extended with an indicator for the collections (such as in TRIX).
Such a format is described in ISO 15926-11.

The selection of additional optional columns as well as the sequence
of the columns is free. The sequence of the columns in an
Expression table is semantically irrelevant, because the columns
shall be uniquely identified by their column identifiers and the
relations between the columns are defined independent of their
position in the table.

A Flexible subset may even include non-standard additional
columns, which columns are then treated as comment from a
formalized language perspective.

14.3 Subset: Nomenclature, Lexicon or Vocabulary

A Nomenclature subset, Lexicon subset or Vocabulary subset
(Nomenclature for short) is intended to specify terminology. A
specification of terminology implies names, synonyms, codes,
abbreviations, translations, etc. that are used to denote something
that is represented by a UID.

A Nomenclature subset represents a list of particular terms as
‘names’ of things and their unique identifier, together with the
language in which the names are expressed and the language
community in which the term for the thing originates.

A Nomenclature list typically includes names of concepts, but may
also include names of individual things such as countries and other
standard geographical objects. Organizations or projects will often
maintain the nomenclature of individual things or collections of
individual things. For example as represented in equipment lists, line
lists, inventories, etc.

A Nomenclature subset includes contextual facts as well. For
example the approval status and date-time values, sources, etc. A
Nomenclature subset consists of the following expression
components in the indicated sequence:
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0, 69,54,71,16,2,101, 1, 8, 67,9, 10, 12 and 13. These expression
components are given in Table 64.

Component ID | Description
(column ID)
0 Presentation key
69 UID of natural language
54 Name of natural language
71 UID of language community
16 Name of language community
2 UID of left hand object
101 Name of left hand object
1 UID of main idea
8 Approval status
67 UID of succeeding idea
9 Date-Time of start of validity
10 Date-time of latest change
12 Name of author of latest change
13 UID of creator of idea

Table 64, Expression components for a vocabulary

A collection of such expression components require a syntactical
structure to define the relations between the components. For
example, a tabular implementation implicitly defines as contextual
fact a naming relation between the UID and a term (name of thing)
in the vocabulary. This relation is of the type ‘is called’ (or ‘is
referenced as’). For example:

130206 is called pump.

Such a table also expresses a contextual fact that defines the
language context in which the naming is done. This idea is of the
type <is presented in> (English).

The Nomenclature subset also allows defining the language
community (sub-culture) where a name originates (component 71
and 16). For example, the name ‘pump’ may be declared to originate
in the ‘mechanical engineering’ domain.
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Misspellings and a pointer to the correct spelling can also be
recorded in the nomenclature table. Misspellings can be indicated by
a status (column 8) ‘replaced’ as well as an ‘identifier of successor
of main idea’ (column 67), which refers to the idea UID that defines
the correct spelling.

Preferred terms are terms which use is preferred in a particular
language community. When an organization wants to specify its
own list of preferred terms it might specify them within their own
language community, even specifying terms that are identical to
terms that are already specified for another language community.

When a Nomenclature (or Lexicon or Vocabulary) is represented in
tabular form it can be represented in a Nomenclature subset of an
Expression table. Table 65 is an example of the main columns in a
Nomenclature table.

54 16 2 101 1 8 67
UID of
Language Gellish Name | UID successor
Language community of of | Status .
. e 1. UID . . of main
(discipline) thing | idea idea
English mechanical 130206 | pump 201 |accepted
engineering
Deutsch  |Maschinenbau 130206 |Pumpe | 202 |proposed
Nederlands | werktuigbouwkunde | 130206 | pompe 203 | replaced 204
Nederlands | werktuigbouwkunde | 130206 | pomp 204 |accepted

Table 65, Nomenclature subset example

Table 65 illustrates that the same concept, represented in the
formalized language by UID 130206 is denoted in English as
‘pump’ and in other languages by different terms, whereas the
spelling ‘pompe’ in Dutch is a misspelling that should be replaced
by ‘pomp’.

14.4 Subset: Dictionary

A Dictionary subset is intended to provide textual definitions of
things, especially of concepts, as an addition to the Nomenclature
and Taxonomy subsets. This implies a relation between the thing
and the text that defines the thing.
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The following is an example of the core columns in a Dictionary
subset of an Expression table.
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54 2 101 1 4 8
UID of | Name | UID
Language | defined | of of Textual definition Status
thing | thing | idea
English 130206 [pump | 205 |[is a rotating equipment |accepted
item intended to

increase pressure in a

liquid.
Nederland | 130206 {pomp | 206 [is een apparaat met accepted
] roterende delen dat

bedoeld is om de druk in
een vloeistof te
verhogen.

Table 66, Dictionary subset core example.

A full Dictionary subset consists of a Vocabulary subset (Table 64)
plus two additional components: the full definition and an option for
adding remarks.

Component ID | Description
(column ID)
4 Full definition (natural language text)
14 Remarks

Thus a Dictionary subset comprises the following components in the
indicated sequence:
0,69, 54,71, 16,2,101, 1, 4, 14, 8, 67,9, 10, 12 and 13.

Note 1: It is possible to record definitions for the same concept in
multiple languages.

Note 2: Definition models are definitions that are expressed as
collections of relations between concepts. Those relations require at
least a Product Model subset.

Note 3: Verbal (spoken) or pictorial definitions require a relation to
a sound or picture (or combination of them). However the textual
definition (column 4) is meant for a string in ASCII or Unicode
only. Therefore, such other definitions require at least a ‘Product
model’ subset, as described below.
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14.5 Subset: Taxonomy

A Taxonomy subset is a specialization hierarchy of concepts, also
called a subtyping hierarchy (sometimes erroneously called a
classification hierarchy). This implies that there are subtype-
supertype relations between the concepts. A subtype concept is a
specialization of a supertype concept. The inverse of that relation
expresses the same idea in another way, namely that a supertype
concept is a generalization of a subtype concept.

Table 67 illustrates the core columns in a Taxonomy table.

54 2 101 1 15 15 8

UID of| Name UID UID of

Language left | of left of right | Name of right Status
hand | hand idea hand hand object
object | object object

English 13020 |pump 7 130227 |rotating accepted
6 equipment item

Nederlands | 13020 |pomp 7 130227 |apparaat met ignore
6 roterende delen |duplicat

e

Table 67, Taxonomy subset example

A specialization relation implies that the subtype concept inherits all
the aspects that are intrinsic to the supertype concept.

Note that the left hand object name and the right hand object name,
as well as the language, are strictly speaking superfluous, but they
are added to support the readability of the expressions. If they are
ignored it becomes clear that the two lines in the above example
define the same idea, which is the reason why the UIDs of the ideas
are identical and the status of the latter one is set at ‘duplicate’.

A Taxonomy subset is an extension of a Dictionary subset by
including expression components for the UIDs and names of
supertype concepts.

Component ID | Description
(column ID)

15 UID of right hand object
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| 201

| Name of right hand object

Thus a Taxonomy subset consists of the following expression
components in the indicated sequence:

0,69, 54,71, 16, 2,101, 1, 15, 201, 14, 8, 67, 9, 10, 12 and 13.

14.6 Subset: Product Model

A Product Model subset is intended for use in practice of data
exchange to describe individual objects (including occurrences)

during their lifecycle as well as knowledge about kinds of things.

A Product Model subset consists of the following expression
components in the indicated sequence:
0, 69, 54, 71, 16, 44, 2, 101, 1, 60, 3, 45, 15, 201, 65, 4, 30, 31, 66,
7,14,8,67,9, 10, 12, 13, 50 and 68.

The expression components are presented in Table 68.

Component ID | Description
(column ID)

0 Presentation key

69 UID of natural language

54 Name of natural language

71 UID of language community
16 Name of language community
44 Left hand object cardinalities
2 UID of left hand object

101 Name of left hand object
| UID of main idea

60 UID of kind of relation
3 Name of kind of relation

45 Right hand object cardinalities
15 UID of right hand object

201 Name of right hand object

65 Partial definition
4 Full definition

30 UID of extent

31 Name of extent
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66 UID of unit of measure

7 Name (symbol) of unit of measure (UoM)
14 Remarks

8 Approval status

67 UID of succeeding idea

9 Date-Time of start of validity
10 Date-time of latest change

12 Name of author of latest change
13 UID of creator of idea

50 UID of collection of ideas

68 Name of collection of ideas

Table 68, Expression components of a Product Model subset

Definitions of the components and implied relations are given in the
Gellish Syntax document.

14.7 Subset: Business Model

A Business Model subset is intended for use in practice of data
exchange to describe propositions. This includes business
communication about both designs (imaginary objects) as well as
real world objects (observed individual objects) during their
lifecycle and about enquiries, answers, orders, confirmations, etc.
This subset is a superset (indicated in bold) of the Product Model
subset, so it can also be used for storage and exchange of knowledge
about kinds of things.

A Business Model subset is a subset that consists of the following
expression components in the indicated sequence:

0, 69, 54, 71, 16, 39, 44, 2, 101, 72, 73, 5, 43, 19, 18, 1, 42, 60, 3,
74, 75, 45, 15, 201, 34, 35, 65, 4, 30, 31, 32, 33, 66, 7, 76, 77, 34,
35,70, 20, 14, 8, 24, 67,9, 10, 6, 12, 78, 79, 13, 53, 50, 68.

The expression components in a Business Model are presented in
Table 69.

Component ID | Description
(column ID)
0 Presentation key
69 UID of natural language

289



54 Name of natural language
71 UID of language community
16 Name of language community
39 Reality
44 Left hand object cardinalities
2 UID of left hand object
101 Name of left hand object
72 UID of left hand kind of role
73 Name of left hand kind of role
4 Full definition
43 Name of intention
19 UID of validity context
18 Name of validity context
1 UID of main idea
42 Description of main idea
60 UID of kind of relation
3 Name of kind of relation
74 UID of right hand kind of role
75 Name of right hand kind of role
45 Right hand object cardinalities
15 UID of right hand object
201 Name of right hand object
34 UID of exponent
35 Name of exponent
65 Partial definition
4 Full definition
30 UID of extent
31 Name of extent
32 UID of probability
33 Name of probability
66 UID of unit of measure
7 Name (symbol) of unit of measure (UoM)
76 UID of accuracy of quantification
77 Name of accuracy of quantification
34 UID of validity location
35 Name of validity location
70 UID of pick list
20 Name of pick list
14 Remarks
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8 Approval status

24 Reason

67 UID of succeeding idea

9 Date-Time of start of validity
10 Date-time of latest change

6 UID of author of latest change
12 Name of author of latest change
78 UID of addressee of expression
79 Name of addressee of expression
13 UID of creator of idea

53 UID of expression

50 UID of collection of ideas

68 Name of collection of ideas

Table 69, Expression components for a Business Model

The above-indicated sequences of expression components are
defined as a handy sequence for human interpretation of a tabular
content. There is no semantic meaning in that sequence, because the
semantics of the relations between the components are defined
explicitly.

14.8 Query subsets

A Query subset consists of one of the other subsets, extended with
expression components for the specification of string commonality
criteria.

In a tabular form a Query subset is a subset that is extended with the
expression components 80 and 81.

Component ID | Description
(column ID)
80 Left hand string commonality
81 Right hand string commonality
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15 Implementation in the Gellish Syntax

All semantic expressions, of any ‘arity’, can be expressed in various
syntaxes. For example in RDF triples, although such triples should
be extended with a method to recognize collections of triples, which
are usually called ‘graphs’, to represent the idea’s, terms as well as
contextual facts. This can be done for example by using TRIX as is
specified in ISO 15926-11. A more direct powerful and efficient
implementation uses the Gellish Syntax, which defines the tabular
Gellish Expression format. Such a table can be used to describe any
ideas as well as queries about individual things or occurrences,
requirements for things or knowledge about things in general. The
various standard kinds of relations that are used to classify the
relations and the indication of the intentions and the contextual facts
determine the categories of the expressions.

Typically a statement or question about an individual thing is
modeled by a relation that is classified by a kind of relation that is
denoted by a phrase that starts with “is” or “has”. A requirement
phrase starts with “shall” and must specify a validity context. A
statement that expresses knowledge about possibilities typically uses
a kind of relation that is denoted by a phrase that starts with “can
have” or “can be”. This is illustrated in the following table, which is
a subset of Gellish expression table.

101 18 1 3 45 201
Left hand Validity | UID . Cardinal Right hand
. context for | of | Relation type name .pe .
object name - . lities |object name
main idea | idea
I-1 201 is a part of P-1
impeller handovler to 202 | shall have as aspect a diameter
operations
centrifugal 203 can have as part a I,n _bump
pump impeller
impeller 204 has by definition 2,n vane
as part a

Table 70, Example of Product data, a Requirement and
Knowledge in one Expression table
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The example in Table 70 illustrates four kinds of statements. The
first one states that a particular impeller is a part of a particular
pump. The second one states that information about any (model of
an) impeller that is handed over to operations shall include a
diameter. The third statement describes the general knowledge that
any centrifugal pump can have (and at least has) one impeller. The
minimum and maximum number of simultaneous instances
(individual impellers for individual pumps) is indicated by the
cardinalities. The last expression states that an impeller has by
definition 2 or more vanes. Table 70 demonstrates that all such kinds
of statements can be expressed in the same table or in tables that
have the same columns and have a single common definition.

A full specification of the Gellish Syntax is presented in the separate
document ‘Gellish Syntax and Contextual Facts (Ref. 4).
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