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1 Introduction

Semantic modeling is a methodology for expressing information in 
such a way that its meaning can be interpreted from the data itself.
The Gellish semantic modeling methodology creates expressions in 
a  computer  interpretable  and  formalized  natural  language. 
Interpretation of expressions in that language do not require a data 
model  nor  additional  (meta)  data.  The  methodology  intends  to 
facilitate interoperability of systems and parties and data exchange 
between  systems  of  various  parties  without  the  need  for  data 
conversions. It can also facilitate standardization of terminology and 
reuse of software.

The Gellish syntax is defined in the ‘Gellish Syntax and contextual 
facts’  document  whereas  the  Gellish  semantics  is  defined  in  the 
Gellish  taxonomic  dictionary  files,  especially  in  the  Gellish 
expressions in the ‘Formal language definition base’ file. Both are 
free of charge downloadable from the Gellish website. This book is 
an elucidation of that language definition.

Semantic  modeling  in  Gellish  English  results  in  collections  of 
expressions in formalized English. Such collections of expressions 
are  called semantic  networks or  semantic  models.  Such networks 
can be about individual things and occurrences and/or about kinds of 
things.  The  latter  typically  express  possibilities  or  knowledge, 
requirements and/or definitions. Semantic modeling can be applied 
in  numerous  domain  disciplines,  including  manufacturing, 
technology,  commerce,  as  well  as  for  modeling  human  and 
organizational relationships.  

This book intent to elucidate the definition of the Gellish family of 
formalized natural languages, as every natural language in principle 
has a Gellish variant: Gellish English, Gellish Dutch, etc.. Each of 
those family members is made as close as possible to the respective 
natural  language,  while  maintaining  being  unambiguous  and 
computer interpretable. The scope of the languages aims to cover in 
principle  any  application  area  and  is  not  limited  to  a  particular 
universe  of  discourse  (UoD).  All  natural  language  variants  of 
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Gellish share the same concepts, whereas those concepts are denoted 
in various languages by different terms and phrases. Although each 
concept  has  the  same  unique  identifier  (UID)  in  each  language 
variant.  For  example,  the  concept  ‘person’  has  a  Gellish  unique 
identifier (990010), independent of the various terms by which that 
concept is denoted in the various languages and independent of the 
number and kind of ‘attributes’ by which the concept is described. 

This  book  describes  the  core  concepts  in  the  Gellish  dictionary-
ontology and the structure of expressions in Gellish. The definitions 
of  the  concepts  and  their  relations  as  well  as  the  vocabulary  of 
Formalized English is specified in the electronic Gellish formalized 
English  Taxonomic  Dictionary.  Gellish  formalized  languages  are 
user extensible. The  Communicator reference application software 
that demonstrates how Gellish can be applied is available on GitHub 
in  two  versions.  A  tutorial  and  wiki  guide  is  available  on  the 
Gellish.net website.

1.1 Semantic versus conventional modeling
Conventional data modeling is based on the conviction that domain 
specific data models are necessary for the design and construction of 
databases.  Such  data  models  define  the  storage  capabilities  and 
constraints  of  the  databases  or  data  exchange  interfaces  for  a 
particular  application domain or  Universe  of  Discourse (UoD).  It 
typically includes defining ‘classes’ or ‘entity types’ and their ‘data 
elements’  or  ‘attribute  types’  and  ‘relationship  types’  in  their 
application domain. Entering data in a defined database is basically a 
matter of instantiating its data model. However, every developer is 
free in defining his ‘classes’ etc. so that the same concept is defined 
differently in every data model and as a consequence such databases 
are  mutually  incompatible.  Thus as  a  consequence,  data  exported 
from one database need to be converted before it can be imported in 
other  databases.  Instances of  data  models  are  conventionally  not 
called  data  models,  although  they  can  be  regarded  as  being 
information models in their own right.

The  Gellish  semantic  modeling  methodology  uses  a  different 
approach.  It  applies  the  predefined  formalized  natural  language 
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Gellish, which includes a syntax as well as an extensive dictionary 
for  the  semantics.  The  Gellish  dictionary  contains  not  only 
definitions of concepts and the vocabulary of the language,  as in 
ordinary  dictionaries,  but  also  a  taxonomy  (a  subtype-supertype 
hierarchy) and a language defining ontology. This makes that the 
Gellish  language  can  be  used  for  expressing  knowledge  and 
requirements  as  well  as  for  the  expression  of  information  about 
individual things. Gellish is intended to be universal, just as natural 
languages  are,  thus  enabling  expressing  nearly  any  knowledge, 
requirements,  ideas,  facts,  queries and responses. The language is 
the same for many application areas. Gellish is more flexible than 
(fixed)  data  models  and  has  nearly  unlimited  capabilities  for 
expressing,  storing  and  exchanging  information.  Thus  for  a  new 
database in another application domain it is needless to define a new 
language.  It  may  be  required  only  to  enrich  the  dictionary.  This 
enables  reuse  of  software  and  reduces  the  modeling  effort  for 
database design. Furthermore, the logic constructs that are included 
in Gellish enable the application of logic for reasoning and arriving 
at logic conclusions. For example by applying inheritance rules via 
the built-in taxonomy and transitive relations. When information is 
expressed in Gellish, it can be stored directly as a semantic network 
in a Gellish enabled database. A Gellish enabled database definition 
does not need to be modified when the business requirements grow 
or  change.  Thus  semantic  databases  can  serve  wide  application 
areas.

Data model developers typically use tools for the definition of data 
models  that  are  based  on  dedicated  data  definition  languages 
(DDL’s).  Examples  of  such  languages  are  XML-Schema, 
SQL/DDL, EXPRESS, etc. or their graphical equivalents, such as 
UML  and  IDEFx.  The  data  models  act  as  meta-models  (meta-
languages)  for  their  content.  This  means  that  conventional  data 
modeling distinguishes three separate languages:

o The highest  level languages are the data modeling languages in 
which data models are written. 

o The  medium  level  languages  are  the  data  models  themselves, 
because  they  act  as  meta-languages  for  their  content.  Their 
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vocabularies consist of names of entity types and attribute types or 
similar things. 

o The lowest level is the user language in which the database content 
is written. This user language typically consists of terms (data) that 
don’t  have  their  own  syntax,  because  the  data  are  stored  in  the 
syntactic structure of the data model (the meta-language).

The first two (meta) languages are formalized languages, as they are 
precisely  defined.  The  user  language  is  usually  only  partly 
formalized and does not belong to the domain of the data modelers, 
apart from the definitions of ‘allowed values’ lists or ‘pick lists’. 
This  means  that  the  definition  of  data  requirements  and  storage 
capabilities  is  done  in  another  language  than  the  actual  user 
language. However those languages are not independent from each 
other, because the content of a database in user language can only be 
interpreted correctly by knowing the semantics of the data model 
definitions and its syntax. 

Furthermore,  it  should  be  noted  that  data  models  each  covers  a 
limited Universe of Discourse. Thus they fixate and limit the data 
storage capabilities of databases by allowing only instantiations of 
their  entity  types/classes.  Thus data  models  in  fact  are  restrictive 
(meta) languages without flexibility to store other information than 
the scope of the models allow. This may prevent that unwanted data 
is entered, but has as disadvantage that costly database conversions 
are required when the scope of the system is extended.

The  Gellish  language  does  not  make  such  distinctions  in 
(meta)languages and UoDs.  It  is  flexible  and does not  fixate  nor 
limit data storage capabilities of semantic databases. It is a single 
formalized  language  that  enables  the  specification  of  data 
requirements  and data  storage  capabilities  as  well  as  enables  the 
storage of any expression of information, knowledge or requirement 
in universal  databases and messages.  This means that  there is  no 
meta language or data model required for guiding the expression of 
information or for the interpretation of expressions.

Semantic  modeling  is  a  potential  successor  of  conventional  data 
modeling, and does more than that, as it also standardizes natural 
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language  user  terminology  by  introducing  the  use  of  a  common 
dictionary, which enables harmonization of terminology in database 
systems and data exchange messages. Gellish formalized languages 
are user extensible and enable the definition and use of company 
specific terminology and synonyms. 

1.2 Terminology
This document uses the following terms: 

Topic Something about which expressions of ideas can be 
communicated.

Fact Something that is the case. 

Possibility Something that might be the case and maybe is the 
case.  People  can  communicate  about  it  by 
expressing  an  idea  about  it  with  a  particular 
communicative intention. 

Idea Something  that  is  the  case,  is  assumed  to  be  the 
case, or is wanted to be the case or that was the case, 
either in a real or in an imaginary world. It may be 
uttered with a communicative intention,  such as a 
statement, denial, promise or question, etc. about a 
topic.

Expression A formulation of an idea about a topic, including an 
intention with which it  is  formulated and optional 
contextual facts about the expression.

Intention A  purpose  with  which  an  idea  is  expressed  and 
communicated,  which  purpose  typically  can  be 
derived from the way in which the idea is expressed 
in  natural  language.  For  example,  the intention to 
make a statement, to ask a question, etc.

Elementary idea A basic idea from which atomic ideas can be 
composed. There are two basic kinds of elementary 
ideas, which are expressed by two kinds of relations. 
The  first  one  is  a  relation  between  a  role  and  a 
relation, which expresses that the relation requires 
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that role, whereas that role shall be played by one of 
the  related  things.  The  second  one  is  a  relation 
between a role in a relation and something that plays 
that  role  in  the  relation,  which  expresses  that  the 
player plays the role.

Atomic idea A  binary  idea  about  a  role  that  is  played  by 
something  in  a  relation.  An  atomic  idea  can  be 
composed of two elementary ideas about the same 
role  and  it  can  be  expressed  as  a  participation 
relation  between  something  and  a  relation,  which 
expresses that the thing plays a particular role in the 
relation.

Binary idea An idea in which two things play their role.

Unary relation A  relation  that  expresses  one  atomic  idea.  This 
means  that  the  relation  expresses  that  one  thing 
plays a role in the relation. This does not exclude 
that other things also play a role in the relation.

Binary relation A relation that expresses two atomic ideas about the 
same relation. This means that the relation expresses 
that there are two things that each plays its role in 
the relation.

Higher order idea
An idea in which more than two things play their 
role.

Higher order relation
A  relation  that  expresses  more  than  two  atomic 
ideas  about  the  same  topic.  This  means  that  the 
relation  expresses  that  there  are  more  than  two 
things that each plays its role in the relation.

Variable order relation
A relation in which the number of things that are 
involved varies or can vary over time. 
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Unit of communication
An  expression  of  an  idea  about  a  topic  that 
comprises only one relation and its communicative 
intention.  Such  a  relation  may  be  composed  of 
atomic and elementary relations.
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1.3 Nomenclature
This  book  uses  conventions  for  graphical  models  as  explained 
below.

Figure 1, Conventions for graphical models

The graphical elements in Figure 1 have a meaning as follows:

1 = A box with rounded corners represents a totality or aspect or a 
high level concept and can represent an individual thing as well 
as a kind of thing.

1 and 2 = A line in the top left corner of a box indicates that the box 
represents an individual thing.

2 and 4 = A rectangular box with an arrow passing behind the box 
represents a relation or a kind of relation that is an expression of 
an idea. 
- A term or phrase in a rectangular box that denotes a kind of 

relation requires by definition a particular kind of left hand 
object and a right hand object.

- The circle  at  one end of  the arrow indicates the left  hand 
object in the expression. The arrow point indicates the right 
hand object in the expression.

16

31 22

74

8

55 663

an individual totality or aspect

a relation, 
 classified as a relation between individual things or 

 classified as a relation between an individual thing and a kind of thing

a kind of totality or aspect

kind of relation
between kinds of things

kind of role 

a subtype-
supertype relation

left hand for an expression



Note:  In  this  document  the  unqualified  term  ‘object’  is  used  as 
synonym for the term ‘anything’. The terms left hand object and right 
hand object refer to the things denoted by terms at the left hand and 
right hand in formalized language expressions.

2 = A rectangular box with a line in the top left corner indicates that 
the relation expresses an idea about an individual thing, being 
either a relation between individual things or a relation between 
an individual thing and a kind of thing.
Furthermore:
- A  shaded  rectangular  box  represents  a  relation  and  a 

classification  relation  between  that  relation  and  a  kind  of 
relation.

- A term or phrase in a shaded rectangular box is a name of the 
kind of relation that classifies the relation.

For example, if the phrase in box 2 would be: ‘is classified as 
a’, then the arrow behind relation 2 indicates that 1 is related to 
3 by relation 2. 
Furthermore, the line in the top left corner indicates that 2 is an 
individual relation, whereas the shade indicates that relation 2 
is classified as a classification relation (an <is classified as a> 
relation).

3 = A box with rounded corners without a line in the top left corner 
represents a particular concept (kind of thing). 

4 = A rectangular box without a line in the top left corner represents 
a relation between concepts. 

5 = A hexagonal box in an arrow at the side of the circle represents a 
first role (role-1) in a relation that is played by a role player. For 
example, the role that is played by object (3) in relation (4). 
If the hexagonal box is shaded, then the term in the box denotes 
the kind of role that classifies the individual role.
Often the roles are not graphically represented as their type can 
be derived from the definition of the kind of relation. 

6 = A hexagonal  box in an arrow at  the side of  the arrow point 
represents a second role (role-2) that is played by a role player. 
For example, the role that is played by object (7) in relation (4). 

17



7 and 8 = A thick line with a circle at one end is an equivalent of a 
specialization relation.
- The circle indicates the subtype (8) and the other connected 

box (7) represents the supertype.
- Thus box (8) represents a particular concept (kind of thing) 

that is a subtype of (7). 
- The inverse means: (7) is the supertype of (8).
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2 Semantic modeling

Semantics is the study of meaning and its expressions by humans. 

Meaning  is  about  any  sensible  ideas,  including  definitions, 
knowledge, requirements and opinions as well as information about 
individual things that are in people’s mind. And such meaning can 
be  about  possible  as  well  as  about  real  and  imaginary  states  of 
affairs.

In the natural language semantics discipline it is common practice 
that the actual usage of natural languages is taken as basic material 
for  studying  meaning.  This  makes  that  the  pragmatics  of  natural 
language expressions are the basic subject of the natural language 
semantics study. Such a study derives the apparent rules that apply 
for  the  expressions  and  interpretations  from  the  practice  of  the 
language  usage.  The  study  also  interprets  meaning(s)  from  the 
expressions in various languages. 

However, the meanings themselves, the things that are expressed in 
natural  languages,  are  language  independent,  because  the  same 
meaning  can  be  expressed  in  different  ways  and  in  different 
languages or even in artificial languages. So, if there is one meaning 
then there can be many expressions of that meaning.

2.1 What is Semantic modeling
Semantic  modeling use  as  basic  materials  (language independent) 
meanings  and  then  develops  a  methodology  for  expressing  those 
meanings in the form of a collection of expressions in a formalized 
language, whereas those expressions constitute a semantic network 
(also called an information model) that is interpretable by software 
in computers. 

A semantic network of expressions (i.e. a semantic model) is an 
information  model  in  which  the  meaning  of  data  can  be 
interpreted from the expressions themselves, without the need to 
consult a meta-model or external documentation.
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The  statement  by  which  a  particular  meaning  is  expressed  in  a 
semantic  formalized language implies  that  the expressions should 
include everything that is necessary to interpret the meaning from 
the expressions. This makes that the language definition is actually a 
part of the semantic network. It also means that a semantic network 
shall  include  the  expression  of  context.  The  formalized  language 
therefore has to use a formal vocabulary, as well as formal kinds of 
expressions  (kinds  of  relations  between  concepts)  and  a  formal 
syntax  (a  structure  of  expression  components  that  make  up  a 
sentence).  The  formality  implies  that  the  terms  or  phrases  (the 
vocabulary)  that  are  used  in  writing  in  that  formalized  language 
denote concepts that are defined in a computer interpretable formal 
dictionary.  Furthermore,  proper definitions of concepts imply that 
the concepts in that dictionary are arranged in a subtype-supertype 
structure, also called a taxonomy. The reason why that taxonomic 
structure  is  required  is  explained  in  chapter  9.  And  finally  the 
definition  of  a  formalized  language  requires  the  expression  of 
generally valid knowledge about the valid combinations of concepts 
in  expressions  in  the  formalized  language.  Such  a  formalized 
language definition forms a collection of expressions that is called a 
language defining ontology. It is called an ‘ontology’ because it is a 
knowledge model that uses relations of various kinds to define the 
concepts. And it is called ‘language defining’ because the ontology 
is  limited to  expressions that  define the formalized language and 
thus  does  not  include  other  categories  of  knowledge.  Thus  the 
language  defining  ontology  is  a  distinct  basis  for  a  knowledge 
representation ontology.

Semantic models in Gellish use natural language terminology, which 
makes  the  expressions  and  models  natural  language  dependent. 
However,  Because  Gellish  uses  language  independent  unique 
identifiers (UIDs) to represent the concepts in the expressions, the 
models  become  natural  language  independent.  This  is  possible, 
because  semantic  models  reflect  general  human  information  and 
knowledge, which is not dependent on its expression in a particular 
language.  By  combining  natural  language  terminology  with 
language independent UIDs we get the best of both worlds: human 
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readability  as  well  as  language  independent  computer 
interpretability.

Natural  language  expressions  are  not  a  very  suitable  means  to 
unambiguously express information, as natural languages allow for 
too  much  freedom for  making  expressions,  so  that  unambiguous 
interpretation of natural language expressions is not achievable with 
the  current  generation  of  computers  and  software.  Unambiguous 
computer interpretability can be achieved by defining a  formalized 
language, which is a formalized subset of natural language in which 
the ambiguity is eliminated and the degrees of freedom are reduced.

In natural languages, meaning or information is typically expressed 
as  statements,  questions,  commands,  etc.  about  topics  or  ideas. 
According  to  the  Gellish  Semantic  Modeling  Methodology, 
information  is  expressed  as  collections  of  formalized  language 
expressions, in such a way that software can interpret the meaning 
(semantics)  from  the  expressions,  without  the  need  for  using  a 
separate meta-model. The inclusion of the definition of a number of 
contextual  facts  (meta-data  or  data  about  the  ideas)  supports  an 
unambiguous interpretation. A standard format enables that database 
systems can import  and export  messages that  contain expressions 
that  are  structured  conform  the  standard  data  structure/format. 
Therefore,  a  native  universal  data  structure  (syntax),  the  Gellish 
Expression Format  is  defined,  although the  language can also  be 
expressed  using  equivalent  formats  such  as  a  particular 
implementation  of  RDF  and  triple  stores  or  in  object  oriented 
network  (graph)  databases.  The  formalized  language  definition  is 
itself  also  expressed  in  that  standard  format.  This  allows  that 
database  systems  can  be  provided  with  capabilities  for 
communicating  in  the  formalized  language  by  loading  an  initial 
vocabulary  and  taxonomic  dictionary-ontology  that  defines  the 
formalized language and thus provide the system with a language 
definition  for  expressing  and  interpreting  information  for  data 
storage and exchange with  other  systems.  The common use  of  a 
formalized  language  also  enables  that  software  can  interpret  the 
semantic  expressions  from multiple  databases  and  it  enables  that 
different databases can interoperate or be treated as if they are one 
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distributed  database.  Interoperation  of  information  about 
requirements as well  as  about  deliverables enables verification of 
deliverables and management of the consistency possibly in multiple 
databases.

This differs from conventional information modeling. In Software 
Engineering it is a widespread convention to create semantic  meta 
models as a basis for database designs and designs for exchanging 
messages  (usually  called  interfaces).  (A  meta  model  is  a  model 
about an instance model) Such a meta model defines the database 
structure  or  message  structure  and  acts  as  its  documentation. 
Typically  the  meta  model  remains  separate  from  the  database 
instances (its content). To interpret the meaning of the data instances 
in  a  database  or  message  the  software  uses  the  meaning  that  is 
contained in the semantic meta model. Typically, each database and 
message uses its own meta model, thus the data structures of most 
conventional  databases  and  messages  are  different.  The  different 
meta models for different databases are the root cause of the costly 
and  time  consuming  process  of  integrating  data  from  different 
databases and developing new interfaces.

Semantic modeling thus means that meaning is included in and can 
be inferred from the created semantic models. To enable this, it is 
required  that  not  only  objects  and  aspects  are  defined  and 
represented in the expressions, but the kinds of the relations between 
the things shall also be defined and explicitly be represented in the 
expressions.  Therefore,  semantic  models  are  relation  oriented  or 
expression oriented (although they can be implemented in an object 
oriented manner). 

2.2 Formalized languages
The  above  description  of  semantic  modeling  illustrates  that  a 
semantic model or semantic network is a collection of expressions in 
a computer interpretable formalized language. For the definition of 
such a formalized language we need to distinguish between:

o Language  definition,  comprising  the  language  defining 
ontology and the syntax definition.
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o Rules and guidelines for creating valid expressions

o Language  usage,  comprising  the  creation  of  semantic 
information models

o Verification of the correctness and consistency of expressions

The  language  definition  requires  the  definition  of  at  least  three 
components:

o The Syntax, which consists of
- Unambiguously defined syntactic structures and rules on how 
to express what needs to be communicated, which implies the 
rules on how to interpret the expressions.

o The Lexicon, which consists of
- Unambiguously defined concepts and individual things and 
their denotations by terms and phrases, being the components 
from which expressions in syntactic structures can be formed. 
This  includes  also  unambiguously  defined  concepts  for 
relations (kinds of relations).

o Semantic patterns, which consists of
- A specification of the minimum amount of information and 
context that shall be expressed in order to enable unambiguous 
interpretation of meaning.

In  other  words:  a  language  definition  consists  of  a  definition  of 
words and sentences (statements, questions, etc.), their structure and 
their context.

There  are  formal  languages  that  are  defined  by  using  artificial 
terminology, but Gellish formalized languages are based on natural 
language  terminology.  Artificial  terminology  is  practiced  for 
example  in  formal  logic  notation  systems  that  use  for  example 
formulae  and  parameters  to  make  expressions.  The  Gellish 
methodology provides a means for making formal expressions using 
formalized  natural  language  terminology  in  universal  semantic 
patterns.  This  means  that  formal  expressions  are  made  using 
components that are taken from terms and phrases that are also used 
and defined in natural languages. 
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In summary: Formalization of English defines Formalized English 
as  a  semantic  language  that  can  be  used  for  creating  computer 
interpretable semantic models,  being collections of expressions in 
Formalized English. Similarly, translated terms and phrases provide 
the vocabulary of  other  formalized languages (Formalized Dutch, 
Formalized German, etc.). 

2.3 The communication cycle
Communication is an interaction or dialogue between an information 
creator and one or  more addressees that act as information user or 
replier.  An  information  creator  typically  is  a  speaker,  an  author 
(writer) or a user of a computer system who enters ‘data’ or creates 
drawings, whereas an information user typically is a receiver, hearer, 
a reader or a user of a computer system who searches and retrieves 
information (data and documents,  including drawings) or  (re)uses 
information in a business process in which additional information is 
generated and which is possibly part of a reply. In some cases this 
information exchange is a one way traffic, in other cases there is real 
communication in the form of a dialogue. Data exchange between 
computers  is  traditionally  primarily  one  way  traffic,  but  is 
transforming  more  and  more  into  dialogues,  in  which  receiving 
systems are expected to respond on the  content of the messages they 
receive. This communication process is illustrated in Figure 2. 
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Figure 2, Communication cycle

The picture in Figure 2 illustrates that a two way communication or 
dialogue  between  different  parties  is  a  continuous  sequence  of 
actions in a ‘Communication cycle’.  The cycle always starts  in a 
‘semantic network’ in a human brain or in software in a computer or 
robot  with  the  production  of  a  thought  or  idea.  The  idea  is  first 
formulated in (or translated to) a coding system or language (the 
encoded information) and then expressed as aspects of a physical 
information  carrier.  This  results  in  an  expression  or  message  (as 
output) which is transported to a receiving party. That party observes 
the  information  carrier  and  either  copies  it  to  create  another 
information carrier, or the party interprets the message (as input) and 
stores it in its memory (semantic network), whereas the party may 
produce another thought, which starts the next cycle. 

For example, assume that a person has an idea about something that 
is the case in the real world or in an imaginary world, which he 
wants to communicate with somebody. In the formulation phase he 
uses the rules of some language to formulate his idea, for example in 
English. This formulation process will result in information that is 
encoded, in this example in English. In the expression phase this 
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encoded information guides his speaking mechanism in uttering the 
words or it guides his fingers in typing characters on a keyboard. 
The expression phase results in a physical carrier of information, for 
example in the form of ink on paper or sound waves or modulated 
signals, such as radio waves. A similar process takes place at the 
interpretation side, where the same definition of the language should 
be used. When an idea is not expressed, but internally interpreted 
and further processed, then it is called ‘thinking’ or ‘processing’ and 
when an expression is reproduces without interpretation, it is called 
copying.  This  information  cycle  illustrates  the  importance  of  the 
common use of a formalized language by all communicating parties 
for a correct interpretation of the expressions, which is fundamental 
for interoperability of systems.

2.4 Formalization of languages
The  Gellish  formalized  language  was  initially  developed  by 
generalizing limited conventional  data  models  and by addition of 
flexibility.  After  discovering the equivalency between generalized 
data models and natural languages with their general applicability 
and flexibility  the development  of  a  formalized language became 
regarded  as  the  formalization  of  natural  languages  through 
simplifying and reducing the rich expression capabilities of natural 
languages. In the following paragraphs we will therefore discuss the 
main  simplifications  of  natural  language  that  are  applied  for  the 
development of the Gellish family of formalized languages. These 
simplifications are:

1. Decomposing meaning into ‘basic semantic units’

2. Separating concepts from terminology

3. Separating intentions from topics

4. Separating timing from time independent expressions

5. Use of singulars and numbers to denote plurals

6. Expressing contexts
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2.4.1 Decomposing meaning into ‘basic semantic units’
There are many ways in which meaning can be expressed. Examples 
are not only through sentences of spoken and written words, but also 
through technical  drawings,  3D models,  (standard)  forms such as 
data sheets and (standard) tables, such as database tables. Each of 
such a  way of  expressing meaning uses  conventions  or  rules  for 
expressing  and  interpreting  expressions.  Consistent  collections  of 
such  conventions  form  coding  systems  that  can  also  be  called 
‘languages’.  The  art  (or  science)  of  converting  such  ways  of 
expressing into data models is called information analysis and data 
modeling. Semantic modeling is the methodology to express such 
information in a formalized natural language, or in other words in 
semantic information models.  

A  Gellish  semantic  modeling  process  begins  with  decomposing 
meaning into ‘basic  semantic  units’  which are  expressions in  the 
form of one or more (binary) relations between things, whereas the 
relations  are  chosen  from  the  standard  kinds  of  relations  in  the 
Gellish  dictionary.  As  part  of  this  process,  indirect  references  to 
things are  replaced by direct  references and implied relations are 
replaced by explicit relations of explicit kinds. This process converts 
complex  and  long  sentences  into  collections  of  simple  short 
expressions. For example, a sentence such as 

• the Erasmus bridge in Rotterdam which is red

is converted into four basic semantic units: 

• the Erasmus bridge is located in Rotterdam

• the Erasmus bridge has as aspect CE

• CE is classified as a color

• CE is qualified as red

In  the  latter  collection  of  expressions  CE  denotes  an  individual 
aspect of the Erasmus bridge and the phrases <is located in>, <has 
as aspect>, <is classified as a> and <is qualified as> denote implied 
standardized  kinds  of  relations  in  Gellish.  The  collection  of 
expressions  can  be  visualized  as  a  network  in  which  the  nodes 
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represent  concepts  and  individual  things  and  the  edges  represent 
binary relations of specified standardized kinds between them. The 
nodes in this mini network are related with other information that is 
available about the concepts such as Erasmus bridge, color, etc. This 
makes that the network forms a part of the total network that also 
includes the language definition.  Thus natural  language sentences 
are converted in collections of binary relations in Gellish.

But  what  about  higher  order  relations,  being  relations  that  relate 
more than two things? As will be explained later, the higher order 
relations are not represented by edges, but are represented by nodes 
in the networks and are modeled as a collection of binary relations 
with their involved things. This simplified the structure of Gellish by 
forming networked collections of only binary relations.

2.4.2 Separating concepts from terminology
Gellish deals with synonyms, abbreviations, codes and translations 
for  the  same  concepts  and  homonyms  for  different  concepts  by 
distinction between the concepts themselves and the multiple names 
by which they may be denoted.  
As  said  before,  concepts  and  relations  represent  meaning  that  is 
language independent. Therefore, each concept and individual thing, 
including each relation and kind of relation is represented in Gellish 
not by a language dependent name, term or phrase, but by its own 
language  independent  unique  identifier  (UID).  This  means  that  a 
language defining taxonomy and ontology which include semantic 
models that define concepts and kinds of relations can be language 
independently  represented  by  a  network  of  relations  between 
identifiers of things. For users in a particular language community it 
is required that the concepts are related to terms and synonyms that 
form the vocabulary of their language. Thus the unique identifiers of 
the  concepts  as  well  as  the  network  of  relations  between  the 
concepts are language independent and need not be redefined for 
other formalized languages in the Gellish family. As a consequence 
the Gellish family of formalized languages share the same concepts 
and structure. 
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This enables the use of synonyms and homonyms and multi lingual 
dialogs  as  well  as  automated  translation  of  expressions  that  are 
formulated in any formalized language of the family. This separation 
between concepts and terminology is further discussed in chapter 5. 

2.4.3 Separating intentions from topics 
Natural languages use different word sequences, dependent on the 
intention of the expressions. This variety of expressions is simplified 
in Gellish by adding explicit intentions to the expression of topics 
while using uniformity in such expressions, as explained below.   
Human speaking or  writing  produces  a  stream of  expressions  by 
means of a sequence of what can be called expression production 
acts, also called ‘speech acts’ (Ref. 5, John R. Searle, Speech Acts). 
Each  expression  production  act  produces  an  expression  that  is 
intended to express what its creator means. A resulting expression is 
a  physical  object,  such as an information carrier,  typically in the 
form of an audible or electronic signal, or written ink on a physical 
document. That physical object is a bearer of that meaning, but it is 
not  the  meaning  itself.  Different  persons  can  express  the  same 
meaning, resulting in different physical expressions. For example, 
the  same  meaning  can  be  expressed  in  different  languages.  The 
interpretation of those various physical expressions should result in 
one common meaning (a common content). Such a common content 
can be given a unique identifier (UID) and a description. We will 
call  such  a  piece  of  common  content  (a  piece  of)  ‘qualitative 
information’.

When different persons express information about the same topic, 
they may exchange ideas about the truth of an idea, or they may 
negotiate about the execution of an act. In such cases they have a 
dialogue in which they create various expressions about the same 
topic. For example, consider the following dialogue about whether 
the Euromast is located in Rotterdam as follows:
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o Where is the Euromast located?

o The Euromast is located in Rotterdam.

o The Euromast is not located in Rotterdam.

o Is the Euromast (really) located in Rotterdam?

o Yes, the Euromast is located in Rotterdam.

All these five expressions are about the same topic1.  A topic is a 
state that may be the case, either in a real or in an imaginary world. 
The topic in this example can be expressed as: 

o whether the Euromast is located in Rotterdam.

It was Searle’s semantic analysis that demonstrated that the freedom 
of  expressions  in  natural  language that  leads  to  the  variety  as  in 
those five expressions can be transformed into a much simpler and 
uniform structure. First it should be noted that the five expressions 
differ in the intention with which each expression is communicated. 
The above five intentions are:

• Question

• Statement

• Denial

• Request for confirmation

• Confirmation

In  other  words,  the  speaker  (creator  of  the  expression)  has  the 
intention to communicate a question, a statement, etc. In linguistics 
this intention is called the illocutionary force.
We can now transform the above four expressions in one simplified 
uniform  structure  by  using  these  intentions  as  separate 
classifications of the idea, while leaving the expression of the idea 
unchanged. This transformation results in the following expressions:

1 A  topic  may  seem  similar  to  what  is  called  a  proposition  in  logic. 
However,  a  proposition  may  be  a  statement  (which  is  true  or  untrue), 
whereas  a  topic  is  not  an  expression,  but  something  about  which  an 
opinion may exist and about which an expression may be uttered.
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o Question: the Euromast is located in where

o Statement: the Euromast is located in Rotterdam

o Denial:  the Euromast is located in Rotterdam

o Request for confirmation: the Euromast is located in Rotterdam.

o Confirmation: the Euromast is located in Rotterdam.

The  combination  of  a  possibility  and  an  intention  forms  a  more 
complete expression of an idea.

There  are  many  more  kinds  of  intentions.  For  example,  we  can 
distinguish for example between a statement, a question, a request, a 
promise,  a  command,  a  refusal,  a  denial,  withdrawals  of  each of 
them,  etc.  By  default  we  can  assume  that  the  intention  for  an 
expression is making a statement.

By identification of all those kinds of intentions it becomes possible 
to  simplify  the  large  variety  of  natural  language  expression 
significantly by transforming them into this structure in the Gellish 
formalized language.

The  above  semantic  analysis  demonstrates  that  statements  and 
queries have the same semantic pattern. This suggests that there is 
no semantic need to create a separate language for the formulation of 
queries. In conventional information technology practice there is a 
distinction between data definition languages for the expression and 
storage of statements in databases and separate query languages for 
the selection and retrieval of information from those databases. This 
appears to be unnecessary.

The expression of queries will be further discussed in paragraph 2.6. 

2.4.4 Expressing past, present and future
In  natural  languages  we  use  various  grammatically  different 
expressions to express whether something was the case in the past, is 
the case in the actual world or will be the case in the future. This 
variety in expressions can be simplified by explicitly specifying a 
validity period and a status of each expression. Something is only an 
expression of a historic fact if  the status is ‘history’,  ‘deleted’ or 
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‘replaced’. This enables not to use inflections, such as is, was, be, 
being, make, making and made, nor is it necessary to define such 
inflections as synonyms. The validity period plus the specified time 
determines  whether  something is  the  case  in  the  past,  present  or 
future. 

This enables that Gellish adopted the convention of usually using 
only the present tense, while adding explicit validity periods to the 
expressions.   

Another option is to model the time explicitly, not by the validity 
period of the expression, but by including the time in the expression 
as illustrated below.

Intention Topic Status
Date of 
start of 
validity

Date of 
change of 
expression

statement
The Erasmus bridge 
<is located in> Rotterdam 

accepted 1995 2011

statement
Temperature of R1 
<is on scale> 1 degC 

history
2012-12-8 

17.22
2012-12-8 

17.22

statement
Act-1 <has as start date> 
15 January 2015 

proposed 1 dec 2012 2 dec 2012

Table 1, Validity period

Table 1 presents some examples of statements that are all expressed 
in the present tense, but only the second statement has a validity that 
is  in  the  past,  because  the  status  is  ‘history’.  The  first  and third 
statements have statuses that  do not  denote a  history,  so that  the 
dates  of  (latest)  change of  the  expression (including a  change of 
status) denote changes of the expressions and not termination of its 
validity.

The  status  and  timing  columns  in  the  above  table  are  a 
representation of  some contextual  facts.  The contextual  facts  that 
represent a validity period are illustrated in Figure 3. 
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Figure 3, Validity period for a relation

These and other contextual facts are further discussed in chapter 13.

2.4.5 Use of singulars and numbers to denote plurals  
In  natural  language  we  can  use  plural  words  when  we  denote 
collections  of  single  items.  For  example  we  can  use  the  plural 
‘books’ when we state that collection B consists of (only) books. If 
we would accommodate for that in Gellish it would mean that the 
dictionary  should  nearly  be  doubled  in  size  with  a  double 
specification of its taxonomic hierarchy or software should be able 
to unambiguously deduce singular terms from the plural names in all 
languages.  This  necessity  is  eliminated in  Gellish  by making the 
collections explicit and by including special kinds of relations that 
classify relations with collections that  imply a  relation with each 
component in the collections. For example, we can express the same 
meaning as above while using the singular word ‘book’ by stating 
that every element in collection B is a book. By modeling in that 
way  Gellish  does  not  need  plural  words  in  most  cases.  This  is 
achieved by applying the following rules (see table 2):

o Denote a concept (a kind) always in single form, except when 
the  concept  (kind)  is  a  kind  of  collection.  Thus  do  not 
specialize kinds of collections by the kinds of components in 
the collection.

o Allow that  individual  collections have names that  include a 
plural term.

o Use  explicit  minimum  and  maximum  simultaneous 
cardinalities  to  denote  constraints  on  numbers  of  individual 
things of this kind that have a corresponding relation with a 
single exemplar of the other kind.
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o For a  relation with a  collection that  implies  a  relation with 
each component in the collection use a kind of relation that 
makes that explicit. For example use a kind of relation which 
name starts with ‘each of which’.

Intention Left hand object Kind of relation
Cardi

nalities

Right 
hand 
object

Statement book has by definition 2,n page

Statement Stock of books B is classified as a collection

Statement Stock of books B
each of which is 
classified as a

book

Table 2, Eliminating the need for using plurals

Such a simplification enables that a formalized language dictionary 
need to include nearly only terms in single form. 

2.4.6 Expressing contexts
Communication always has a creator and one or more (potential) 
addressees. These and other facts make that communication always 
functions in a context. If the same expression is uttered by different 
persons at different occasions and different times, then it may have 
different meanings. Therefore, the context in which an expression is 
used is usually relevant for its interpretation. However, context is 
often not an explicit content of an expression, but it is implied with 
the  expression.  In  Gellish  we  want  to  capture  all  aspects  of 
expressions that are relevant for a proper interpretation. Therefore, 
any  expression  should  include  relevant  elements  that  express  the 
context.  We will  call  such  contextual  elements  ´contextual  facts´ 
about the expressions.

The first contextual facts that we already encountered are answers to 
the following questions:

o Who is the creator of the expression

o Who is the addressee of the expression

o When was the expression created
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These contextual facts illustrate that the above expressions, such as 
the question ‘Is the Euromast located in Rotterdam?’ needs a context 
for a proper interpretation and response. If you read the question in a 
book  (such  as  this),  then  you  don’t  need  to  respond,  but  if  the 
question is addressed to you, then you need to know who has raised 
the  question  (the  ‘author’).  Thus  a  full  semantic  model  should 
expand the expression as follows:

The information creator John addresses addressee Mary on time t1 

with the question: ‘Is the Euromast located in Rotterdam?’

Or simplified and formalized in tabular form:

Expres
sion id

Creator Addressee
Date-

time of 
creation

Intention Expression of idea

101 John Mary t1 question
the Euromast is located 
in Rotterdam

102 Mary John t2 assertion
the Euromast is located 
in Rotterdam

Table 3, Expressions with some contextual facts

A  large  list  of  kinds  of  optional  contextual  facts  in  Gellish  is 
discussed in chapter 13.

2.5 Commands
A  message  in  a  formalized  language,  typically  consisting  of  a 
collection  of  expressions,  may  be  preceded  by  a  command  that 
indicates  the  start  and  the  nature  of  the  collection  and  may  be 
followed by a command to terminate the execution of the command. 
For example an insertion command has the following pattern:

Intention
Name of 
left hand 

object
Name of kind of relation

Name of 
right hand 

object
command insert the following expressions into uri/filename
statement ... ... ...
statement ... ... ...
command terminate the execution of insert
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A query command has the following pattern:

Intention
Name of 
left hand 

object
Name of kind of relation

Name of right 
hand object

command select the following expressions from uri/filename
question ... ... ...
condition ... ... ...
command terminate the execution of select

Depending  on  how  a  sender  qualifies  the  ‘intention’  of  the 
expressions,  the  interpretation  may  result  in  an  insertion  of  new 
expressions  in  existing  expressions,  or  as  a  modification  (delete, 
historicize or replace) of expressions, or as a query that requires a 
response to the sender.
A receiving system (an information user or addressee or hearer) that 
receives  such  a  message  should  start  the  interpretation  of 
expressions in such a message by validating it in order to verify that:

• The expressions are semantically correct (see par. 3.7).
For  example,  UIDs  should  be  unique  and  in  the  correct 
range,  kinds  of  things  should  be  known according  to  the 
dictionary or they are properly defined within the message, 
the left hand and right hand objects shall be of the correct 
kind, etc.

• The message is internally consistent and without duplicates, 

An  insertion or  modification command  then  requires  to  verify 
whether  the  message  is  consistent  with  or  duplicates  existing 
expressions.  This  requires  comparing  each  expression  in  the 
message with the expressions about the things that are mentioned in 
the message and that are already included in the receiving system. 
Therefore, the interpretation continues with the execution of a query 
on the expressions that are already included in the receiving system. 
The result  of such a query will  include requirements,  constraints, 
possibilities and definitions of concepts. This enables the receiving 
system  to  verify  the  consistency  of  the  new  expressions  when 
compared  with  the  existing  expressions  and  enables  to  further 
process the insertion. 
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A query command or  ‘select’  command can be executed without 
further validation. The results can be returned in a message that is 
preceded by a report command as follows:

Intention
Name of 
left hand 

object
Name of kind of relation

Name of 
right hand 

object
command report the following expressions from uri/filename

answer ... ... ...
confirmation ... ... ...

denial ... ... ...
command terminate the execution of report

The  report  can  then  be  post-processed  and  converted  into  other 
layouts, using a report generator.

2.6 Queries and insertions
A query typically consists of a collection of one or more expressions 
about one or more unknowns. In Gellish, the expression(s) form a 
mini  semantic  network  or  search  pattern  that  includes  the 
unknown(s) and that is intended for finding known objects that have 
a  pattern  that  corresponds  with  the  search  pattern.  A  query  is 
answered by reporting the found knowns together with information 
about them.

Queries  that  are  expressed  in  conventional  query  languages  for 
databases such as SQL and SPARQL have structures that are quite 
different  from  expressions  of  statements  (propositions)  in  those 
languages. This differs from natural languages in which queries and 
statements,  as  well  as  denials  and  confirmations  have  nearly  the 
same  structure  and  use  the  same  terminology.  This  raises  the 
question  whether  the  Gellish  language  that  is  used  to  express 
statements  (propositions)  can  also  be  used  for  the  expression  of 
questions. 

Some differences between kinds of expressions, such as changes in 
word sequences and the use of question marks, can be eliminated 
completely when the ‘Speech act’ theory of John Searl is applied. As 
described in the previous paragraphs,  Searl  demonstrated that  the 
expressions can be made identical by explicit mentioning a separate 
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‘intention’  for  each  expression.  For  example,  the  following three 
expressions only differ in their intention:

Intention Topic

statement book B-1 has a price of 110 dollar

question book B-1 has a price of 110 dollar

confirmation book B-1 has a price of 110 dollar

The intention on the second row indicates that the second expression 
of  the  topic  shall  be  interpreted  as  a  question.  As  there  are  no 
unknowns included in the expression,  it  implies that  the question 
asks for a confirmation or a denial, which is equivalent to the answer 
‘yes/no’ or ‘true/false’. 
This illustrates why the ‘Speech act’ theory and other conventions 
open up the possibility for using the same formalized language for 
statements  (in  exchanges  messages  or  data  stores)  as  well  as  for 
insertion  commands,  for  queries  and  for  responses  (answers), 
promises, etc. as is described below.

Therefore,  a  general  model  of  a  query about  an  object,  when 
expressed in Gellish, is the same as a general model with assertions 
about any object, apart from the fact that expressions in a query have 
the following characteristics:

o The intention of an expression in a query has the value ‘question’ or 
‘condition’.  A  condition  provides  a  further  specification  of  the 
conditions that should be satisfied by the unknown target object(s).

o The  unknowns  and  collections  of  unknowns  in  a  query  are 
represented  by  UIDs  that  should  be  in  the  reserved  range  1-99, 
possibly preceded by the prefix ‘unkn:’. And application software 
may  generate  such  UIDs  automatically  from  names  that  are 
preceded by question marks.

o The names of the unknowns are free text. 
If nothing about the name(s) is known, then it is recommended to 
take a name from the list of reserved names as specified below or to 
use names that start with a question mark (?) as is the same as the 
convention for SPARQL. This freedom for names enables searching 
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on string commonalities (see below).
For example, what, what-1, which person, or ?person.

o It  is allowed to specify a part of a name of a searched object in  
combination  with  a  specification  of  ‘string  commonalities’  as 
defined below.

2.6.1 Names and UIDs of unknowns
Thus  objects  with  a  UID  in  the  range  1-99  are  by  definition 
interpreted  as  unknowns  that  are  searched  for  on  the  basis  of 
expressions that specify the search criteria. This should be consistent 
with the ‘intention’. For example, an unknown with UID ‘1’ might 
be denoted by a name that is just a question mark (‘?’) or a question 
mark followed by a  dash and a  sequence number (‘?-1’),  or  any 
other string that is not a name of a known thing. To facilitate that,  
the  following terms are  reserved and automatically  interpreted as 
unknowns: 

o what 

o who 

o which xx, whereas xx stands for some kind. For example  ‘which 
person’, ‘which pump’, etc. 

o where 

o when 

o how many

o how much

The use of any of these terms or of terms that start with a question 
mark  (such  as  ?person)  supports for  a  human  user  that  the 
expression should be  interpreted as  a  question.  For  software  that 
interprets the formalized language expressions the name as well as 
the UID in the range 1-99 (possibly with prefix ‘unkn:’ can be used 
to  determine  that  the  expression  contains  an  unknown  and  thus 
should be interpreted as (part of) a question.
The above reserved terms may be used more than once for different 
unknowns  provided  that  different  UIDs  are  used  to  identify  the 
unknowns.  However,  it  is  recommended that  the  unknowns have 
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different names, for example by extending a standard name with a 
dash and a sequence number. For example what-1, what-2, etc.

2.6.2 Simple questions
One  pattern  for  a  question  is:  “what  are  the  object(s)  that  have 
particular  types  of  relations  with  other  specified  objects?”  For 
example, the question ‘what is classified as a pump’. This question 
has no UIDs yet. This it is not excluded that a first search may find 
different  concepts  with  the  same  name  (homonyms).  Therefor,  a 
system should reflect the question by asking for verification that the 
question is properly interpreted as is expressed in Table 4:

43 2 101 1 3 15 201

Intention
UID of left 

hand 
object

Name of 
left hand 

object

UID 
of 

idea

Name of kind
of relation 

UID of 
right hand 

object

Name of 
right hand 

object
question 1 what 301 is classified as a 130206 pump

Table 4, A Query 

The question that is expressed in Table 4 asks for the object(s) that 
have a relation of type <is classified as a> with the object 130206 
(pump).  This  expression  can  be  unambiguously  interpreted  by  a 
computer as a question, because the intention ‘question’ expresses 
that it is requested to identify the unknown object(s) that satisfy the 
kind of relation, and it is defined for the family of Gellish languages 
that a UID in the range 1-99 is an identifier of an unknown, whereas 
for a human reader the term ‘what’ (or e.g.  ‘?pump’) denotes an 
unknown. 

Furthermore it is common logic that the inheritance rules define that 
the  question:  “what  is  classified  as  a  pump?”  implies:  “what  is 
classified as pump or is classified as one of the subtypes of pump?”. 
It even also implies: “what has a relation with the concept ‘pump’ or 
its  subtypes  whereas  the  relation  is  a  classification  relation  or  a 
subtype of classification relation”.

Advanced  software  should  be  able  to  use  this  as  a  basis  to 
automatically  generate  the  answer  as  a  list  of  pumps  with  their 
characteristics. Such a list could for example consist of one bicycle 
pump and two centrifugal pumps, all three being a subtype of pump 
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and a water pump, not being a subtype of pump, but a role of a 
pump. Thus the response could be as follows:

P-1 is classified as a bicycle pump
P-101 is classified as a centrifugal pump
P-102 is classified as a centrifugal pump
P-301 has a role as a water pump

For  such  an  implementation  see  the  Communicator  reference 
application on GitHub.

2.6.3 String commonalities
Software should enable  searching for  objects  by character  strings 
that  only  partially  match  with  the  name  of  the  objects.  A 
specification of such conditions is called a specification of the string 
commonality.  Thus a string commonality is a specification of the 
conditions under which a search string (term) at the left hand or right 
hand of an expression should be considered as matching with one or 
more  target  strings  (names  of  things).  For  example,  it  can  be 
specified how to find all things that are denoted by a term (have a 
name) that contains a capital P. This requires the specification of 
string commonality value ‘case sensitive partially identical’, which 
specifies that a search string shall be identical to a part of the target 
term, whereas the case (upper case or lower case) of the part shall 
match.

An  Expression  for  a  query  contains  two  additional  components 
(component ID 80 and 81) in which the commonality criteria for the 
left  hand and the  right  hand term can be  specified.  The  allowed 
values for string commonalities are:

 csi: case sensitive identical
 cii: case insensitive identical
 cspi: case sensitive partially identical
 cipi: case insensitive partially identical
 csfi: case sensitive front end identical
 cifi: case insensitive front end identical
 csd: case sensitive different
 cid: case insensitive different
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 e: equal
 u: unequal
 le: less than or equal
 ge: great than or equal

2.6.4 Conditions in queries
A query may contain additional conditions on the unknown(s). For 
example, Table 5 presents the expression of the query ‘which P-1 is 
classified  in  some  way’,  whereas  P-1  may  be  preceded  and/or 
succeeded by additional characters, while that ‘?P-1?’ also has an 
aspect that is classified as a height. 

43 2 101 60 3 15 201 80

Intention

UID of 
left 

hand 
object

Name 
of left 
hand 
object

UID of 
kind of 
relation

Name of kind 
of relation

UID of 
right 
hand 
object

Name 
of right 

hand 
object

Left hand 
string 

commonality

question 1 P-1 1225 is classified as a 2 how
case sensitive 

partially 
identical

question 1 P-1 1727 has as aspect 3 what
condition 3 what 1225 is classified as a 550126 height

Table 5, A Query for objects with aspects

The Query  Table 5 includes three unique identifiers (UIDs) in the 
range  1-99.  The  first  one  (1)  indicates  that  P-1  is  a  string  that 
denotes an unknown object. The first line also includes a ‘left hand 
string commonality’ that indicates that search string P-1 may be only 
a part of the target string(s), whereas the P in the target string(s) 
shall  be  in  uppercase.  Furthermore,  only  the  expressions  are 
requested in which the target object is classified, although that may 
be in any way (‘how’). The results of this query may well deliver the 
same three pumps as in the above example. 

The second line asks for aspects of the resulting objects, whereas the 
third line specifies the condition that only the aspects are requested 
that are classified as a height. For querying aspects, Gellish uses the 
following rule:
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When a query asks for an individual aspect, then the response should not 
only provide a possible name of the aspect, but should also provide its 
classification, its value and if applicable the scale for the value.

Therefore, a possible response on the above query could be:

P-1 is classified as a centrifugal pump
P-1 has as aspect h-1
h-1 is classified as a height
h-1 has on scale a value equal to 600 mm

Note  that  Table  5 contains  two  questions.  This  means  that  P-1 
should be reported anyway, also when the searched dataset would 
not contain its height. If the intention on the second line would have 
been  a  condition  instead  of  a  question,  then  P-1  should  not  be 
reported as it does not satisfy the condition to have a height.

2.6.5 SQL equivalent inserts and queries
Data manipulation languages (DMLs) or Query languages such as 
SQL are designed to be independent of database structures and of 
languages that can be used for their content, as long as the database 
structure is tabular. They do not put any requirements on the tables 
in the database,  neither on their  names nor on their  columns and 
column  names.  This  freedom  is  required  because  a  lack  of 
standardization in database creation methodologies causes that, even 
when  different  databases  contain  the  same information  about  the 
same kinds  of  things,  those  databases  are  generally  composed of 
different tables, with different table names and different numbers of 
columns with different column names.  Thus INSERTs as well  as 
SELECT statements (for queries) will be different for each database. 

This freedom implies that these languages presuppose that authors of 
inserts  and  queries  have  knowledge  about  the  internal  structure 
(syntax) of the queried database as well as of the used terminology 
for  table  columns and table  content.  Thus,  SQL and other  query 
languages themselves do not deal with any meaning (semantics) of 
the  columns  of  the  tables  and  are  also  independent  of  the 
terminology  that  is  used  for  the  content  of  the  tables.  They  are 
generic query languages that contain a minimum of semantics. 
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Insertion

This can be illustrated on the insertion of some data in a relational 
database.  For  example,  the  following  simple  insertion  of  prices, 
titles and classification of books in a database table called ‘Book’ is 
written  in  SQL  as  follows  (this  example  is  adapted  from 
http://en.wikipedia.org/wiki/SQL):

INSERT INTO Book
   (title, price, type)
 VALUES
   (‘B-1’, 110)
   (‘B-2’, 120, ‘paperback’) ;

Apparently the author of  this  insert  knows (and must  know) that 
there exists  already a table,  called ‘Book’,  that  has at  least  three 
columns, called title, price, and type, whereas he also knows that a 
title is the title of a book and a price on the same row is the net 
selling price (in dollar) of a single copy of a book with that title and 
that a type denotes a subtype of the concept book that classifies the 
book on that same row. The insert statement also introduces a new 
free term ‘paperback’ in the vocabulary of the content, unless the 
term ‘paperback’ is a predefined allowed value for ‘type’. (Note that 
a  column ‘type’  in  another  table  in  the same database may have 
another meaning.)

The same content could however be stored in a databases that have 
different  definitions.  For  example,  the  database  ‘Product’,  with 
columns that have names such as ‘name’, ‘net price’, ‘product type’. 
Then the INSERT would have been different, although the content 
would be the same, and the queries on those two databases will also 
be different.

Selection

Data can be retrieved from such database tables with queries that are 
expressed in such query languages and those expressions are also 
dependent on the database structure. This can be illustrated on an 
example select statement from a ‘Book’ table, which is expressed in 
SQL as follows:
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SELECT *

FROM  Book
WHERE price > 100.00 ;

This simple query apparently assumes the same knowledge from its 
author as is required for an insertion.
Also for queries holds that the same question should be formulated 
in a different way when it was a query on the ‘Product’ database. It 
should also be noted that the expressions for insertion of information 
are  significantly  different  from expressions  of  a  query  about  the 
same  information  and  those  expressions  are  again  different  from 
expressions that present the results of a query.

Equivalent inserts and selects in Gellish

If the Gellish formalized language is adopted for expressing inserts 
and queries, results and messages, then the structure of expressions 
as well as their content are all the same. This is achieved by the rule 
that  all  Gellish  formalized  language  expressions  have  the  same 
expression components (thus they all can be stored in one collection 
of standard expression components) and that all Gellish expressions 
use  the  same  (extensible)  taxonomic  dictionary  with  predefined 
concepts. This also hold for example for terms such as book, title, 
price and paperback. Furthermore, the expressions for insertion are 
similar to the expressions of queries and to stored and exchanged 
information. 

Thus formalized language expressions of insertions and queries are 
only  determined by the semantics  and are not  determined by the 
many possible database structures, and they are independent on the 
variety of terminology that is used in current practices for names of 
entity types and names of attribute types. 

This  means  that  information  that  is  expressed  in  a  formalized 
language  can  be  inserted  in  any  database  that  is  based  on  the 
formalized language or that has import and export mapping to the 
formalized  language  expressions  (within  access  and  requirements 
constraints). Thus the system independent expressions don’t need to 
be rewritten for other databases. Table 6 presents an example of an 
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insert command for information about the prices of two books with 
expressions in a formalized language that are database independent. 

Intention

UID of 
left 

hand 
object

Name of 
left hand 

object

Name of kind 
of relation

UID of 
right 
hand 
object

Name of 
right hand 

object
UoM

command 195070 insert
the following 

expressions into
101 ABC

statement 102 B-1 is classified as a 490023 book
statement 102 B-1 has as aspect 103 P-1 of B-1
statement 103 P-1 of B-1 is classified as a 550742 price

statement 103 P-1 of B-1
has on scale a 
value equal to

920366 110 $

statement 104 B-2 is classified as a 493755 paperback
statement 104 B-2 has as aspect 105 P-1 of B-2
statement 105 P-1 of B-2 is classified as a 550742 price

statement
105

P-1 of B-2
has on scale a 
value equal to

920376
120 $

command 193423 terminate the execution of 195070 insert

Table 6, Insert product data in database ABC

Note: Each row in Table  6 represents an expression. The names of 
objects are repeated for readability and UoM means Unit of Measure 
or scale. Table 6 only shows a subset of the components of Gellish 
expressions and thus of the columns in a Gellish Expression Format 
table. In a full Gellish Expression Format each line has more UIDs 
and contextual facts, such as the validity period, status, originator, 
etc.  This  enables  for  example  adding  multiple  prices  in  various 
currencies  and  each  with  its  own  validity  time  period,  if  the 
cardinality constraints allow for that.

The body of Table 6, without the first and the last line can be copied 
exactly into a database table, such as ABC, because the storage table 
has an identical expression structure.

The above query in SQL is expressed in a formalized language as 
follows:
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Intention

UID of 
left 

hand 
object

Name of 
left hand 

object

Name of kind of 
relation

UID of 
right 
hand 
object

Name of 
right hand 

object
UoM

command 193617 select
the following 

expressions from
101 ABC

question 1 ?Book-1 is classified as a 490023 book
question 1 ?Book-1 has as aspect 2 ?Price-1
question 2 ?Price-1 is classified as a 550742 price

question 2 ?Price-1
has on scale a 
value greater 

than
920053 100 $

command 193423 terminate the execution of 193617 select

Table 7, Query on ABC in the form of a product model

Comparison of Tabel 6 with Tabel 7 shows the similarity of the two 
models, which demonstrates that the expression of information and 
the expression of queries can be done in the same language. Thus 
there is no need for a dedicated query language.

Note: A query may search for and select from more than one table at 
the same time. Because the various tables have the same definition, 
tables do not need to be JOINed; only the search results should then 
be presented to the user as a combined result.

The  query  that  is  expressed  in  Table  7 illustrates  that  software 
should take the taxonomy of concepts into account. For example, the 
taxonomic  dictionary  specifies  that  the  concept  paperback  is  a 
subtype of book. If the software processes that information correctly, 
then a query on book will also find the paperbacks. This hierarchy 
enables to simply modify the query to search e.g.  on paperbacks 
only or on any other subtype. This would be more complicated in an 
SQL search in the above table ‘Books’.

In SQL and asterisk (*) can be used to specify that ‘all’ attributes 
from  a  table  should  be  reported.  This  assumes  that  the  authors 
knows  what  ‘all’  means,  thus  which  attributes  are  in  the  table. 
However,  ‘all’  does not  mean ‘all  information about  the selected 
books’. Because, when there is information about the books in other 
tables  the query becomes more complicated.  In  Gellish modeling 
approach the  kinds  of  relations  that  are  queried can be  specified 
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more  precisely.  For  example  the  query  in  Table  7 uses  kind  of 
relation <has as aspect> and thus it only asks for aspects, whereas on 
the following line it is specified that only aspects are required for 
which holds that the aspect <is classified as a> price. The query can 
easily be extended with additional requests for other information, 
such as:

question What-1 is located in
Some 

location-1

question
Some 

location-1
is classified as a building

 Or with the very generic question:

question What-1 is related to A-1
question A-1 is classified as a anything

This  latest  question  asks  for  everything  that  is  known about  the 
books.

2.6.6 SPARQL and RDF
SPARQL is a query language that is especially made for querying 
databases that are formatted conform RDF, also called ‘triple stores’. 
As shown above, the semantics of questions and other expressions 
require  more  than  just  triples,  such  as  units  of  measure  and 
contextual  facts.  That  is  the  reason  why  many  implementation 
specify extensions of RDF to represent collections of triples, which 
are called ‘named graphs’ as is also applied in ISO 15926-11, which 
standardizes an RDF implementation of Gellish Formal English.

Extended RDF implementations of a formalized language can use 
SPARQL  directly.  However,  RDF  itself  defined  a  syntax  and  a 
minimum of semantics (it only defined a few concepts), just as SQL. 
This  enables  that  in  RDF  expressions  any  kind  of  relation 
(‘predicates’  in  RDF)  and  any  left  hand  and  right  hand  term 
(‘subject’ and ‘object’ in RDF) can be used. Thus everybody can use 
his  or  her  own  ‘namespace’  and  own  ontology.  This  powerful 
flexibility  at  the  same  time  reveals  the  weakness  towards 
interoperability, because RDF does not standardize the language in 
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which  databases,  messages  and  query  contents  can  or  shall  be 
expressed.

The expression of inserts and queries can be made database system 
independent  only  when  an  extended  RDF  is  combined  with  a 
semantically rich formalized language, such as Formalized English. 
Such a combination provides a language that includes semantics as 
well as syntax (format). 

Another question is whether the SPARQL syntax is to be preferred 
above the tabular Gellish Expression Format syntax as is used in 
Table 6 and  Table 7. The commonalities and differences between 
these two formats can be illustrated on the SPARQL example query 
for  a  ‘foaf’  (friend  of  a  friend)  database 
http://en.wikipedia.org/wiki/SPARQL:

PREFIX foaf: http://xmlns.com/foaf/spec/
SELECT ?name ?email
WHERE {
  ?person a foaf:Person.
  ?person foaf:name ?name.
  ?person foaf:mbox ?email.
}

The  above  example  shows  that  SPARQL  also  presupposes 
knowledge  about  the  particular  structure  of  the  queried  database. 
Although the structure of RDF expressions is database (data model) 
independent, this example demonstrates that this query is dependent 
on the structure of the foaf database and relies on the understanding 
of  the  content  of  the  foaf  ontology  (http://xmlns.com/foaf/spec/), 
which  includes  a  database  structure  (table  definitions)  with 
definitions  of  ‘classes’  (entity  types)  that  have  pre-defined 
‘properties’ (attribute types).  For example the class foaf:Person is 
not  the  same  as  the  generic  concept  ‘person’,  because  the  foaf 
ontology defines  a  foaf:Person as  a  person that  has  a  number  of 
predefined  ‘properties’  (attributes)  with  specific  names.  Thus  a 
foaf:Person  is  factually  defined  as  a  particular  collection  of 
‘properties’.  For  example  the  foaf  ontology  pre-defines  that  a 
foaf:Person can have or has a surname, as well as e.g. publications 
and  a  currentProject,  and  inherits  an  mbox.  Apparently  the  foaf 
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ontology defines a very specific ‘language’ that cannot be merged 
with other ontologies/languages and thus the query will only work 
on a foaf database and shall be rewritten for any other database.

This demonstrates why the neutral form of expressions in  Table 6 
and Table 7 has advantages.
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3 Semantic models in formalized languages

Definition: A  Semantic  Model  is  a  chain  or  network  of 
formalized expressions (also called an information model) in 
which the  meaning of  the  content  (data)  can be  interpreted 
from the  model  itself,  without  the  need to  consult  separate 
information about that data. 

The  formalization  implies  that  meaning  can  be  expressed  as  a 
collection of connected expressions, called units of communication, 
that  are  syntactically  and semantically  comply  with  the  language 
definition,  and  are  computer  interpretable.  The  definition 
furthermore states that the expressions include all information that is 
required for their interpretation, without the need to consult system 
documentation, such as meta-data, data models (database definition 
schemas) or program code.

Expressions in semantic models comprise terms as well as phrases 
or  verbs  that  relate  the  terms.  The  terms  represent  things  about 
which something is  expressed and the phrases  or  verbs  represent 
relations of particular kinds between the things that are represented 
by  the  terms.  Expressions  therefore  consist  of  relations  between 
terms, which relations are classified by explicitly defined kinds of 
relations.

To some extent  it  is  possible to regard natural  languages also as 
being semantic models.  The allowed sentence structures form the 
possible structures of ‘messages’ and the allowed terms and phrases 
define  the  remainder  of  the  language.  The  enormous  freedom to 
make  sentences  in  natural  languages  mean  that  the  underlying 
semantic  patterns  can  be  very  complicated  and  flexible,  whereas 
different users apply different parts of the allowed structures when 
they make sentences. This makes it very difficult for computers to 
interpret and to generate natural language expressions. This is the 
reason to formalize and predefine the allowed sentence structures 
and the allowed terms and phrases in the definition of a formalized 
language.
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The  above  definition  also  states  that  a  Semantic  Model  is  a 
collection  of  expressions  in  a formalized language.  A  formalized 
language means that the grammar (the syntactical structure of the 
expressions and the lexicon) of the language is  explicitly defined 
(and thus limited) and that the allowed components that are used in 
the expressions are also explicitly defined. Such explicit definitions 
can be pre-defined in the dictionary of the formalized language, or 
they can be user defined as part of the model. 

Simple semantic models can be presented graphically as networks of 
nodes  and  vertices,  although  such  networks  usually  ignore 
intentions,  classifications and contextual  facts.  Such networks are 
often called graphs. Nodes in such networks represent anything that 
can be thought and communicated about, real as well as imaginary. 
The vertices represent (binary) relations between the things that are 
represented by the nodes. These binary relations represent expressed 
ideas,  such  as  statements,  opinions  or  questions  about  topics  or 
states of affairs.

Semantic databases that support the storage of information that is 
expressed in a formalized language should have data structures that 
support  storage  and  retrieval  of  any  semantic  expression  in  that 
formalized  language.  Therefore,  they  should  enable  storing  a 
definition  of  the  formalized  language  as  their  common  initial 
content, followed by storing expressions of ideas that are expressed 
in  that  language.  Thus,  software  should  be  able  to  interpret  any 
semantic  model  in  that  formalized  language.  Preferably  it  should 
also  enable  treating  different  semantic  models  as  if  being  one 
distributed model. 

Interoperability or integration of semantic databases that apply the 
same formalized language thus should only require verification and 
management of the consistency of their content.

Semantic modeling thus means that a sending party creates semantic 
models in a formalized language that include sufficient expression of 
meaning such that the meaning can be inferred from the models by 
the computer of a receiving party that can interpret the formalized 
language. 
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3.1 Scope: information, knowledge and 
requirements

The scope of  a  conventional  information model  is  limited by the 
definition of the data model for which the model enables making 
instances.  The  scope  of  a  Gellish  semantic  model  is  in  principle 
unlimited, because the formalized language has no scope limitations. 
For example, a conventional Building Information Model (BIM) will 
have a scope that  is  defined and limited by the scope of its  data 
model (for example the IFC data model of ISO 16739). However a 
BIM in the form of a ‘semantic model’ does not have constraints on 
its scope. Therefore, the required scope of a semantic model can be 
defined explicitly by the party that requires the model.

Information  that  is  exchanged  between  parties  or  is  stored  in 
databases can be very different. It includes models of information 
about individual thing, but it also includes knowledge models, which 
consists of expressions of what can or might be the case about kinds 
of things in general. Furthermore it may include generic requirement 
models with the expression of what is required for kinds of things or 
requirements  for  the  realization  of  individual  things,  such  as  is 
typically expressed in designs and specifications. It may also include 
definitions  of  things  that  are  by  definition  the  case.  All  such 
information can be covered by Gellish semantic models and can be 
expressible in Gellish formalized languages.

The scope of the expressions that are considered in this document 
thus covers expression of things that are the case, or that may, can or 
shall be the case, and that the expressions are communicated with 
any  of  the  possible  intentions,  such  as  statements,  questions, 
answers, promises, etc. 

3.2 Expression capabilities of formalized languages
The  expression  capabilities  of  a  formalized  language  are  mainly 
determined by three components:

o The number of different kinds of things that can be ‘said’. In other 
words: the number of different kinds of expressions (sentences) that 
can be made.
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o The amount of information about the context in which the things are 
said.

o The extent of the vocabulary that is available in the language.

It appears that natural languages can be formalized because of the 
following observations and experience:

o Ideas as well as questions can be formulated in the form of networks 
of relations between things.

o Relations can be classified by kinds of relations, whereas it appears 
possible to predefine a collection of (standardized) kinds of relations 
that provide a rich semantic expression capability.

o Meaning of expressions is mainly determined by the definitions of 
the kinds of relations and the definitions of the related things and the 
intention with which the expressions are made.

o Each relation has a context that can be expressed as a collection of 
contextual facts.

With the above observations in mind, the expression capabilities of a 
formalized language are mainly determined by the following three 
components:

o The  variety  of  kinds  of  relations  that  are  defined  as  part  of  the 
language definition (the language defining ontology). 

o The richness of the number and kind of contextual facts that express 
the context for interpretation. 

o The number and richness of concepts and their vocabulary that are 
defined in the taxonomic dictionary.

The kinds of relations for the Gellish family of formalized languages 
are described in this book. Definitions, terms and phrases that denote 
those standard kinds of relations are provided in the Upper Ontology 
section  (base  ontology)  of  the  Gellish  Formalized  English 
Taxonomic Dictionary-Ontology [Ref. 4]. Additional definitions of 
kinds of higher order relations are provided in the mathematics and 
activities and processes domains of that dictionary.

This book addresses mainly the components: 
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- kinds of relations,

- the kinds of roles that are required by those kinds of relations,

- the kinds of objects that by definition have such roles (role players)

- the kinds of contextual facts that can express the context of
  expressions

The  vocabulary  of  the  formalized  language  is  formed  by  further 
subtypes of the concepts and are not discussed in this book, but can 
be  found  in  the  dictionary.  This  book  is  intended  mainly  as  a 
clarification on why and how ideas and questions can be expressed 
in a formalized language, using the available kinds of relations. It is 
especially intended to clarify the logic that helps finding the proper 
kinds of relations for making expressions. Once a kind of relation is 
found, the definition of the relation, as provided in the dictionary-
ontology, will further specify the required roles and allowed roles 
players in such a relation. This document also describes what can be 
done in case a new kind of relation or a new concept seems to be 
required.

The  way  in  which  the  interpretation  context  is  expressed  and 
corresponding kinds of contextual facts are defined is described in 
chapter 13.

3.3 Models of expressions of ideas
To facilitate users in making expressions in a formalized language 
and thus in building semantic models, we intent to develop generic 
patterns for expressions in semantic models. Each pattern should be 
a pattern for a collection of expressions that is minimally required to 
express  a  unit  of  communication,  thus  making  a  statement  or 
expressing  an  idea  about  any  topic.  We  define  a  unit  of 
communication  as  an  expression  of  an  idea  about  a  topic  that 
comprises  basically  only  one  relation.  Such  a  relation  may  be 
composed of atomic and elementary relations. 

Before we discuss those patterns, we first need to discuss how to 
express an idea about a topic. 
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Topics  are  possible  states  or  possibilities  in  a  real  or  imaginary 
world. Any topic may be the subject in an expression of an idea 
about the topic. Consider the following topic about something in the 
real world: 

‘whether the Euromast is located in Rotterdam’. (1)

A semantic analysis of this topic will result in the conclusion that it 
is about a possible state, expressed as relation of a particular kind, 
which kind of relation is defined as a relation between two single 
individual  objects. This conclusion is reflected and captured in the 
classification  of  the  things  and  the  classification  of  the  relation. 
From the expression we can infer that ‘Euromast’ refers to (denotes) 
a possible object in the real world.

The meaning of this expression thus is: 

o Probably there exists something called ‘Euromast’, and 

o There is some ‘predicate’2 about it, namely the possibility of its 
‘being located in Rotterdam’. 

The  second  part  of  expression  (1)  allocates  a  ‘predicate’  to  the 
referred object [Searle, Ref.  5]. Our interpretation of the predicate 
‘being located in Rotterdam’ reveals that it contains a reference to 
another possible object, which suggests:

o Probably there exists something called ‘Rotterdam’. 

Finally the predicate contains the phrase ‘is located in’ which must 
be  the  specification  of  the  reason  why the  two referred  possible 
objects  are  related  according  to  the  expression.  The  phrase  ‘is 
located in’ is a phrase that we can recognize as a repeating pattern in 
similar expressions about things that ‘are located in’ other things. 
This ‘standard’ phrase apparently denotes a general concept or idea 
of ‘being located in something’. The phrase does not directly denote 
an individual relation, but it is a general phrase for a kind of relation 

2 A predicate is sometimes called a property. However, we will use the 
term  property  only,  with  the  connotation  of  some  kind  of  facet  and 
ownership, for quantifiable aspects that are intrinsic to a possessor of the 
aspect. For example length, color, etc.
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that is used in expressions about individual relations between pairs 
of individual things. This means that it is a kind of relation that is 
used  for  classification  of  the  individual  relations  between  two 
referred individual objects.

This leads us to the conclusion that an idea is usually expressed by 
the intention ‘whether’, followed by a sequence of three terms or 
phrases. For the above example this expression is:

o whether the Euromast is located in Rotterdam

This means that the model of Table 3 can be extended into the model 
of Table 8.

Express
ion id

Creato
r

Addres
see

Date-
time of 

creation
Intention

First referred 
object

Kind of 
relation

Second 
referred 
object

1 John Mary t1 question the Euromast is located in Rotterdam

2 Mary John t2 statement the Euromast is located in Rotterdam

Table 8, Model of an expression with some contextual facts

Linguistic  analysis  of  phrases,  such  as  ‘is  located  in’,  will 
conventionally  start  from the  grammatical  components,  being  the 
words,  such  as  ‘is’,  ‘located’  and  ‘in’.  This  usually  leads  to  a 
discussion of the roles of categories of words, such as verbs, like 
‘being’ and ‘locating’, etc. as basic concepts. However, our semantic 
analysis is searching for semantic concepts3 that represent distinct 
meanings.  Such  a  semantic  concept  is  primarily  a  concept  in 
people’s minds that is used in thinking about the real world or about 
an imaginary world. Our hypothesis is that concepts, such as ‘being 
located in’, are generic semantic concepts in human thinking. If that 

3 Semantics deal  with concepts rather than words,  because  the concept 
‘word’ is a grammatical concept and not a semantic concept. Words may 
denote  anything and they are  natural  language dependent.  The concept 
‘verb’ is not very helpful either as a semantic concept as it may indicate a 
static relation as well  as a dynamic occurrence.  Furthermore,  a kind of 
activity may be denoted by a verb (e.g. in W1 is classified as walking) as  
well  as  by  a  noun  (e.g.  W1  is  classified  as  a  walk),  whereas  those 
classification express practically the same meaning.
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is  the  case,  then  it  is  basically  irrelevant  how such concepts  are 
expressed  in  various  languages.  The  concept  itself  is  language 
independent. Only the grammar of the language and the available 
vocabulary determine whether the concept is denoted by a sequence 
of three or four words in English or by one or more character in 
Japanese (written Japanese only recognizes characters and no words) 
or in whatever way. 

Semantic  analysis  has  the  task  to  reveal  the  variety  of  semantic 
concepts that are represented by phrases that are in use to express 
the various kinds of states of affairs in the real and imaginary world. 
For example, it should clarify what the relation is between concepts 
such as  ‘being  located  in  something’  and concept  ‘being  located 
somewhere’.  The  identification  and  definition  of  those  semantic 
concepts should result in a dictionary of semantic concepts that are 
used  to  express  why  referred  objects  are  related  according  to 
expressions. The availability and maintenance of such a dictionary is 
an essential component of semantic modeling.

Expressions of ideas

Expressions of ideas in a formalized language have the following 
characteristics:

o They contain kinds of relations and their denotations by terms or 
phrases that have unambiguous definitions.

Those kinds of relations:

o Define the nature of the relations that relate concepts and individual 
things in syntactic structures by classifying those relations 

o Define the roles that are by definition involved in those relations 

o Define the requirements for role players in those relations.

3.4 On denoting
The above analysis of the topic ‘whether the Euromast is located in 
Rotterdam’ was basically an analysis of various expressions (1-5). 
From  that  analysis  we  concluded  that  people  apparently  use  a 
generic concept of ‘being located in’ something, in a generic pattern 
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to create expressions about individual things that are located in other 
individual things. 

As said before, semantic modeling typically starts with a state of 
affairs  in  the  real  world  or  in  an  imaginary  world.  A  basic 
assumption of semantic modeling is: 

human beings  share  notions  of  individual  things  and  concepts 
(kinds of things), although they may denote them with different 
terms or phrases. 

In  other  words:  human  beings  generally  recognize  the  same 
individual things and concepts in the real  world or if  they create 
things  in  a  realistic  imaginary  world,  then  those  things  can  be 
recognized by others. 
When we want to communicate about the shared recognized things 
and concepts,  we cannot  use the things and concepts  themselves, 
unless  the  things  are  present  so  that  we can  point  to  the  things. 
Therefore, instead of the things themselves, we should use shared 
unique identifiers (UIDs) that unambiguously refer to the things and 
concepts,  so  that  those  identifiers  can  be  arranged  in  syntactic 
structures to create universal expressions. Then we can replace the 
UIDs by terms and phrases with which we denote the things and 
concepts in various languages to make natural language expressions. 

We will illustrate this process by modeling a 
real  world  situation  (state)  and  derive  the 
semantic expression from that. Assume that 
the  Japanese  Okada  was  on  holidays  and 
crossed  a  border  of  what  appears  to  be  a 
city, where he sees a sign with the name of 
the city ‘Rotterdam’. Thus, since then he is 
aware of an individual thing (UID 1) which 
he  denotes  as  ‘Rotterdam’  and  which  he 
classifies as ‘city’.  Then he saw a building 
from which  he  took  the  picture  as  shown 
(UID 2): 

Then Okada was told  by a  guide  that  the  building is  called ‘the 
Euromast’ (UID 3). 
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When Okada came home in Japan, he documented his trip for his 
wife Oni with the following statements:

the Euromast is located in Rotterdam

This  information is  related to  his  knowledge about  these objects, 
such as:

the Euromast is represented on picture-1
picture-1 is classified as a photo
the Euromast is classified as a building
Rotterdam is classified as a city
Rotterdam is located in Netherlands

According to our assumption, human beings are familiar with shared 
concepts, so that we can allocate universal UIDs to them. Examples 
of such shared concepts are: ‘photo’ (4), ‘being represented on’ (5), 
‘being  located  in  something’  (6),  ‘city’  (7),  ‘building’  (8)  and 
‘classification’  (9),  ‘Netherlands’  (10).  (Note:  these UIDs are  not 
official Gellish UIDs.)

When the English terms and phrases are replaced by the UIDs to 
denote  the  generally  shared  things  and  concepts,  then  the 
expressions become as is presented in the following table:

3 6 1
3 5 2
2 9 4
3 9 8
1 9 7
1 6 10

This  table  is  a  language  independent  representation  of  the 
expressions, which can be presented to a user in Japanese as well as 
in any language, provided that a dictionary is available that links 
numbers that represent concepts and individual things to terms.

3.5 Syntactic and semantic patterns
A syntactic structure is a linguistic structure, which means that it is a 
structure of spoken or written or computer encoded communication. 
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For  the  purpose  of  this  document  we  ignore  other  kinds  of 
communication, such as body language.

Definition: A syntactic structure is a linguistic structure in which 
linguistic representatives of concepts are or may be arranged in 
order to express meaning. 

A  human  being  or  computer  can  only  communicate  about  ideas 
about what can be the case in practice by using representatives of the 
things  about  which  is  communicated.  Such  representatives  of 
concepts  are  typically  linguistic  components  that  are  also  called 
terms,  such  as  words  (lexemes)  and  phrases,  including  also 
abbreviations, codes and names. For example, the fact that the Eiffel 
tower is located in Paris, can be communicated only by expressing 
that  idea  using words  and phrases  that  are  representatives  of  the 
concepts Eiffel tower and Paris, but also a representative of the idea 
of ‘being located somewhere’. 

Syntactic  structures  are  studied  extensively  by  linguists.  See  for 
example  Noam  Chomsky’s  Syntactic  Structures  (Ref.  2).  Every 
language  has  its  own  Grammar,  which  consists  of  the  allowed 
structures for  its  expressions (syntactic  rules)  and its  terminology 
(lexicon), and they are all different, unfortunately. But the meanings, 
the semantics  that  are  expressed in  those languages are  language 
independent.  So,  there  is  one  meaning  and  many  possible 
expressions.

Valid  expressions  in  a  particular  language  shall  be  syntactically 
correct, semantically correct and shall express the intention of the 
originator of the expression. 

An expression in a particular language is syntactically correct when 
it consist of terms that are arranged in positions (slots) in syntactic 
structures  that  are  valid  for  that  language,  whereas  each  term 
represents a concept which kind is allowed for the slot it occupies. 
Syntactic rules describe which kind of concept is allowed for which 
position in a syntactic structure of a particular language. These rules 
indirectly determine which terms may appear in which position in a 
particular structure. 
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For example, assume that an artificial language L is defined by the 
simple syntactic structure for expressions in L that consists of an 
Object–RelationType–Object (O-RT-O) structure. Assume that L is 
also  defined  by  the  rules  (constraints)  that  any  linguistic 
representative  of  anything  may  take  an  O  position  and  only  a 
linguistic  representative  of  a  kind  of  relation  may  take  the  RT 
position in an expression. Then every expression that consists of a 
sequence  of  a  term,  a  kind  of  relation  and  another  term,  is  a 
syntactically correct expression in L. 
Assume  further  that  the  definition  of  L  is  extended  with  the 
additional grammatical rule that only linguistic representative terms 
and phrases may be used that are selected from an English Lexicon. 
Then  the  expression  ‘the  Eiffel  tower  <is  located  in>  Paris’  is 
syntactically and grammatically correct in L.
However,  also  ‘John  <is  author  of>  Paris’  is  syntactically  and 
grammatically correct  in L. Thus the grammatical  rules allow for 
nonsense expressions as well as sensible expressions.

The syntactic and grammatical rules are not suitable to determine 
whether  the  expressions  are  semantically correct.  This  requires 
semantic rules and expressed knowledge.

Semantic  patterns consist  of  syntactic  structures  that  are 
accompanied by additional semantic rules about the kinds of roles 
that  are  by  definition  involved  in  relations  of  various  kinds  and 
about kinds of players of those roles in those relations. 

These semantic rules can only be adhered to and verified when the 
nature of the related things and the roles they play are known. The 
nature of some thing is expressed by the category or kind to which 
the  thing  belongs.  The  relation  between  some  thing  and  such  a 
category or  kind is  called a  classification relation.  Therefore,  the 
related things and the roles shall be classified explicitly by the kinds 
of things and kinds of roles respectively in order to record the nature 
of the things. 

An expression in a language L is semantically correct when each 
thing (object) that is related to another thing in a syntactic structure 
is of a kind that complies with the allowed kind of role player that is 
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defined for  the  kind of  role  that  is  by definition involved in  the 
relation of the specified kind.

For example, assume that the definition of language L is extended 
with  the  semantic  rule  (constraint)  that  a  kind  of  relation  that  is 
denoted by the phrase <is author of> by definition involves a first 
role of the kind ‘author’ and a second role of the kind ‘written’ and 
that the role ‘author’ may be played by an individual thing of the 
kind ‘person’ whereas the role ‘written’ may be played by a thing 
that is a qualitative document. Then the above expression John <is 
author of> Paris can be semantically verified. If Paris is classified as 
a  city,  then  the  verification  will  report  that  the  expression  is 
semantically incorrect, because city is not a subtype of document.

3.6 Semantic principles
Semantic modeling is based on a number of principles. The main 
ones  are  described  below.  These  principles  are  derived  from the 
theory that is developed in the book ‘Formalized Natural Languages’ 
[Ref. 1].

Semantic principle 1: Elementary binary ideas

Every idea can be decomposed into one or more elementary binary 
ideas. This holds also for second order4 ideas as well as for higher 
order ideas (ideas in which more than two things play a role), which 
can also be composed of a collection of elementary binary ideas.

Semantic principle 2: Elementary binary relations 

An  elementary  or  second  order  idea  can  be  expressed  by  and 
unambiguously interpreted in a known context from the meaning of 
an expression in the form of a relation between two things (a binary 
relation)  and  one  or  two  explicit  classifications  of  that  relation. 
These classifications shall relate the relation with an earlier defined 
(standardized) kind of relation.

4 First order ideas, such as ‘John walks’, are always expressed in Gellish 
as binary relations. For example as John <is involved in> or <is performer 
of> walking.

63



Semantic principle 3: Ideas and intentions

Communication requires the expression of an idea together with the 
expression of a communicative intention for that idea.

Semantic principle 4: Expression of context – main idea and 
contextual facts

The interpretation of an idea requires not only expression of the idea 
as such, but also information about the context in which the idea is 
expressed. That contextual information requires that each main idea 
is accompanied by the expressions of a number of contextual facts. 

Because of the above principles,  each line in an Expression 
table contains the expression of one “main” atomic idea and 
various contextual facts.

Semantic principle 5: Unique identifiers

An  idea  is  represented  by  a  relation  between  unique  identifiers 
(UIDs),  which  are  representatives  of  things  themselves,  and  not 
between names of things. The reason for that is that names of things 
are  ambiguous,  because  of  the  phenomenon  of  synonyms, 
homonyms, codes, abbreviations, translations, etc. The related things 
as well as the relations and both their kinds are therefore represented 
in the formalized language by UIDs. 

Semantic principle 6: Taxonomy of concepts

Each concept (including also kinds of relations) shall be defined as a 
subtype of another (supertype) concept. 

The  principles  5  and  6  together  make  that  each  idea  is 
classified by a kind of relation that is a subtype of ‘relation’ 
(UID 2850).

Semantic principle 7: Kinds of relations

The  definition  of  the  formalized  language  shall  include  all  the 
semantics  that  is  necessary for  the unambiguous interpretation of 
expressions,  which  includes  kinds  of  relations.  In  other  words, 
semantic  expressions  can  be  interpreted  by  a  computer  in  an 
unambiguous way when the meaning of kinds of relations, such as 
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<is classified as> and <is a kind of> as well as the meaning of the 
other  concepts,  such as  ‘pump’  and ‘capacity’,  are  denoted  by  a 
unique  identifier  (UID)  and  are  predefined  in  an  electronic 
taxonomic dictionary (the Lexicon of the formalized language).

Semantic principle 8: Extensibility

The  semantic  language  shall  be  extensible  dynamically  with  the 
addition of new concepts, including also new kinds of relations, by 
adding specialization relations, which incorporate the new concepts 
in the taxonomy. 

With such extension capabilities it is possible that individual objects 
are  even  classified  by  new concepts  that  do  not  yet  exist  in  the 
taxonomic dictionary. For example, the individual object P-1 can be 
classified  as  a  bicycle  pump,  by  also  adding  a  definition  of  the 
concept  bicycle  pump  as  an  ad-hoc  extension  of  the  taxonomic 
dictionary.  This makes that  a receiver system can unambiguously 
interpret even such kinds of ideas. 

3.7 Correct formalized language expressions
A  formalized  language  comprises  a  collection  of  formalized 
language expressions, presented in a Gellish Expression Format or 
an equivalent format. Correct formalized language expressions are 
expressions that comply with the following rules and guidelines.

Rule 1: Each expression of a main idea relates only individual things 
and/or kinds of things (concepts or classes) that are:

- Either selected from the formalized language dictionary,

or are

- Properly defined subtypes of those concepts,

or are

- Individual things that are properly classified by those kinds 
of  things  or  their  subtypes  (via  individual  classification 
relations),

whereas the used individual things and kinds of things are 
related by individual relations that are classified by kinds of 
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relations  (relation  types)  that  are  also  selected  from  the 
formalized language dictionary.

Rule 2:A subtype of a concept is properly defined if the definition 
satisfies  the  requirements  that  are  expressed  in  chapter  9, 
which describes how a formalized language dictionary can be 
developed and extended.

Rule 3: An individual thing is properly classified if it has at least one 
classification relation with a  kind of  thing that  is  selected 
from the formalized language dictionary or its subtypes.

Rule 4: Any relation shall relate things that play roles of kinds that 
are required by the kind of relation that classifies the relation 
and that  are defined in the Upper Ontology section of the 
Dictionary. 
Example 1: assume that A is a performer of B. This implies 
that A shall be a physical object, because the ‘is a performer 
of’ kind of relation requires a first role (performer) that can 
only be played by a physical object. N.B. The second role 
(performed)  is  a  role  that  can  only  be  played  by  an 
occurrence. So B must be an occurrence.
Example 2: assume that C is a kind of D. This implies that C 
is a concept, because the <is a kind of> relation requires a 
first role that is a subtype, which can only be played by a 
concept (or subtype of concept).

Rule 5: A relation between an aspect and a number may be classified 
by  a  scale,  in  which  case  the  qualitative  scale  (unit  of 
measure)  shall  be  selected  from  the  formalized  language 
dictionary  or  from an  extension  that  is  defined  in  correct 
Formal English.

Rule  6:  Concepts  and  individual  things  shall  have  UIDs  in  the 
correct range and names of them (being terms or phrases to 
denote them) shall only be used in expressions when they are 
allocated  in  a  defining  statement  (classification  or 
specialization relation) or in an alias relation (or one of its 
subtypes, such as a synonym relation).
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3.8 Expression of meaning
Meaning can be expressed in various natural languages. That is done 
in  expressions  or  sentences  that  should  satisfy  the  rules  of  the 
language. Such an expression or sentence consists of components 
(‘things’)  that  are  denoted  by  terms  and  that  are  arranged  in  a 
linguistic  structure.  Therefore,  an  expression  or  sentence  can  be 
regarded as  a  relation that  involves  (relates)  one or  more  related 
‘things’, whereas each ‘thing’ has its own role in the relation, which 
role determines its position in the structure.

Figure 4, Generic expression or sentence

Meaning  can  also  be  expressed  in  formalized  languages. 
Formalization  language  such  as  into  Formal  English  or  Formal 
Dutch (Formeel  Nederlands)  is  based on a  standardization of  the 
structure  for  expressions  and  sentences  and  on  the  sole  use  of 
explicitly defined concepts and defined individual things as elements 
in  the  expression.  This  mean  that  expressions  should  use  either 
concepts  from  a  formal  dictionary  or  should  be  defined  by  a 
language user conform the rules of the formalized language.

A generally usable formalized language should be an open language, 
which  means  that  it  should  include  a  mechanism  to  define  new 
concepts ‘on the fly’ and to add those concepts to the language and 
immediately  use  them.  Gellish  Formal  English  is  such  an  open 
formalized language.

The  standardized  structure  of  expressions  enables  to  present 
expressions  in  tabular  form,  whereas  such  tables  are  suitable  for 
databases as well as exchange messages. Formal English can thus 
use a single generic Expression table that is suitable for containing 
any collection of relations that represents any expression or sentence 
that fits a fundamental semantic pattern as discussed above. Figure 4 
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illustrates  those  structures,  whereas  Table  9 illustrates  how those 
structures can be represented in tabular form. Table 9 shows the core 
of an Expression table, filled with an example of the expression of a 
higher order (5th order) relation. It also illustrates that an individual 
relation  (relation-X)  need  to  be  classified  explicitly  in  order  to 
enable proper interpretation. 

Left hand
Left hand 

kind of 
role

Elementary 
kind of relation

Right hand 
kind of 

role
Right hand

thing-1 player plays role of kind-1 in involver relation-X
thing-2 player plays role of kind-2 in involver relation-X
thing-3 player plays role of kind-3 in involver relation-X
thing-4 player plays role of kind-4 in involver relation-X
thing-5 player plays role of kind-5 in involver relation-X

relation-X classified is classified as a classifier kind of relation 
Y

Table 9, Tabular representation of a relation

For binary relations it is possible to simplify the tabular expression 
by combining the two lines and the classification line in one row in 
the same table (without loss of explicit  meaning).  Table 10 is an 
Expression  table  in  which  the  first  row shows  in  general  how a 
binary  relation  is  expressed,  and  the  second  row  provides  an 
example of a binary relation.

Left 
hand

Left hand 
kind of role

Kind of relation
Right hand 
kind of role

Right 
hand

thing-1 role of kind-1 kind of relation Y role of kind-2 thing-2
thing-1 part is a part of whole thing-2

Table 10, Tabular representation of a binary relation

Note that  the  kind of  relation on the  second row in  Table  10 is 
denoted  by  a  phrase  <is  a  part  of>,  which  phrase  represents  a 
composition relation. 

The definition of a kind of relation specifies the kinds of roles that 
are required for such a relation as well as the allowed kinds of role 
players.  For  example  the  definition  of  a  composition  relation 
includes that it requires two roles of different kinds: a part and a 
whole, whereas the definition also includes that each role may be 
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played by any individual thing. Such definitions of kinds of relations 
therefore enable that for classified relation it becomes possible that 
the kinds of roles can be derived from the definition of the kinds of 
relations.  Because  of  that  the  kinds  of  roles  do  not  need  to  be 
repeated for every usage of a kind of relation. 

Binary relations

Thus the definitions of kinds of relations include the definitions of 
the kinds of roles. This fact makes it possible that the representation 
of  binary  relations  can  be  further  simplified  by  eliminating  the 
explicit kinds of roles. Table 11 is an Expression table in which the 
first row shows a simplified way of expressing a binary relation in 
general,  and the second row provides an example of a simplified 
expression of a binary relation.

Left hand
Left hand 

kind of role
Kind of relation

Right hand 
kind of 

role
Right hand

thing-1 kind of relation Y thing-2
thing-1 is a part of thing-2

Table 11, Tabular representation of a binary relation with 
implied roles

The definition of kinds of relations also include the specification of 
the  allowed  kinds  of  role  players.  This  fact  enables  software  to 
verify  whether  the  related  things  (or  their  classifiers)  satisfy  the 
requirements for role players (using the taxonomy hierarchy). In that 
way the software can verify whether an expression is semantically 
allowed.

The above illustrates why a basic assumption of Formal English is 
that meaning can be expressed as a collection of relations between 
things. 
To provide sufficient information for a correct interpretation of such 
a collection of relations it is required that is explicitly specified 

o For each relation it is explicitly specified of which defined kind of 
relation it is, and 
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o For each related thing it is explicitly specified of which defined 
kind it is, and

o For  each  role  that  is  played  by  a  related  thing  it  is  explicitly 
specified of which defined kind it is. 

Furthermore,  such  a  collection  of  relations  shall  consist  of  a 
minimum number of relations of particular kinds. Requirements for 
collections of relations are further described in the documentation of 
the semantic patterns that are discussed in the next chapter. Finally, 
each relation requires the explicit expression of a context. Such a 
context can be expressed as a collection of ‘contextual facts’. Those 
kinds of contextual facts are defined in par. 13.4.
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4 Universal semantic patterns

This chapter is about universal semantic patterns for the expression 
of  ideas  of  any  kind.  The  structures  specify  what  is  minimally 
required  to  be  expressed  in  order  to  enable  interpretation  of  the 
meaning of basic units of communication. This minimum comprises 
the expression main ideas and the expression of the context of the 
expressions. The semantic patterns for the expression of main ideas 
are discussed in this chapter. The expression of context is discussed 
in chapter 13. 

The semantic  patterns are natural  language independent,  although 
the terms that may be arranged in those structures are taken from 
natural languages.

4.1 Expressions of ideas by binary relations
The way in which meaning is modeled in a semantic model builds 
on  the  principle  that  semantic  expressions  are  idea  oriented  (or 
relation  oriented  although  it  may  be  implemented  in  an  object 
oriented  database).  Knowledge  as  well  as  information  about 
individual things is modeled as expressions of ideas. 

Expressions of ideas are composed of relations of particular kinds 
between related things, each of which playing a role of a particular 
kind in the relation. 

Figure 5, Arity of relations

A relation in principle can relate any number of related things (role 
players), each with its own role of a particular kind in the relation. 
The number of roles (and role players) is called the rank or ‘arity’ of 
the relation. For many kinds of relations their rank or ‘arity’ is fixed, 
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but some relations have a variable arity. Relations with a variable 
arity are for example interactions of multiple things in activities and 
processes,  because  the  number  of  things  that  participate  may  be 
increasing  or  decreasing  during  the  activity  or  process.  Figure  5 
illustrates that kinds of relations can be distinguished by their arity.

An example of an expression (or sentence) that is modeled by one 
higher order relation, thus with multiple roles and thus multiple role 
players, is given in Figure 6.

Figure 6, Higher order relation (with rank 5)

Such a relation-X can be expressed in tabular form as in Table 12:

thing-1 plays role-1 in relation-X 

thing-2 plays role-2 in relation-X 

thing-3 plays role-3 in relation-X 

thing-4 plays role-4 in relation-X 

thing-5 plays role-5 in relation-X 

Table 12, Tabular form of a higher order relation

This illustrates that relations of any rank n can be expressed by a 
collection of n elementary expressions, each of which consisting of 
two elementary (level 1) binary relations. The general form of each 
of the elementary expressions is given in Figure 7.

Figure 7, Roles and role players in a relation
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The same content can be expressed by an inverse expression as is 
illustrated in Figure 8.

Figure 8, Inverse generic expression by two elementary relations

Relation  1  and  relation  2  in  the  elementary  expression  and  the 
inverse elementary expression are the same relations, although they 
are  denoted  by  different  terms  or  phrases.  Those  differences  are 
caused by the natural language conventions in case of a difference in 
reading direction. For a semantic model this reading direction is of 
secondary  importance  and  semantically  such  different  terms  and 
phrases can be regarded as equivalent.

Figure 7 and Figure 8 illustrate the position of roles and role players 
in a semantic model. 

Table 13 expresses in a generalized tabular form that each of the 
above elementary expression is composed of two elementary level 1 
binary relations. 

1. relation-X involves role-1 

2. role-1 is played by player-1 

Table 13, Generic elementary relations (level 1)

The two elementary relations specify how a relation is related to a 
role of a role player and how such a role is related to a role player.

For  example,  a  particular  project  can be  represented by a  higher 
order relation (Project-X), which involves various roles, one role of 
being the manager and several other roles of being a participant. The 
fact that somebody is the manager of the project can be expressed by 
an elementary relation as follows:

Project-X involves role-1 is played by John

Whereas in this expression role-1 is classified as follows:

role-1 is classified as a manager.
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The model of Figure 7 and 

 can be simplified, while maintaining the semantic richness. This can 
be  done  by  using  an  equivalent  atomic level  2  kind  of  relation 
between the  role  player  and the  relation.  Such a  level  2  kind of 
relation is only equivalent when it is defined such that it implies by 
definition the existence of a role and its classification, as well as the 
two elementary relations (‘involves’ and ‘is played by’) in which the 
role is involved. The general form of a phrase that denotes such a 
level 2 relation is <is playing a role of kind-1 in>. This results in 
expressions at level 2, which have as general form:

Player-1 is playing a role of kind-1 in relation-X

In  natural  languages  we  shorten  such  phrases,  while  maintaining 
their meaning, by simply saying for example:

John is manager of project-1 (level 2)

The explicitly modeled definition of such a level 2 kind of relation 
consists basically of six statements.  Table 14 presents a pattern for 
such a definition.

Name of left 
hand object

Name of kind of relation
Name of right 
hand object

Definition of left 
hand object

relation type-1
has by definition as first 

role a
role of kind-1

relation type-1
has by definition as 

second role a
role of kind-2

role of kind-1 is (defined as) a kind of role is a role that….
role of kind-2 is (defined as) a kind of role is a role that….
role of kind-1 can be played by a kind-1
role of kind-2 can be played by a kind-2

Table 14, Pattern for the definition of a kind of relation

An example of the definition of the <is manager of> relation is:
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is manager of has by definition as first role a managed
is manager of has by definition as second role a manager
managed is (defined as) a kind of role is a role 

that….
manager is (defined as) a kind of role is a role 

that….
managed can be played by a activity
manager can be played by a person

Table 15, Example of a definition of a kind of relation

Based on this definition a computer should be able to deduce from 
expression (2) that John plays a role as manager in project-1.
Furthermore, when John is classified as a man or as a person and 
Project-X is classified as a project or as an activity, then a computer 
should be able to verify whether the role players are of the correct 
type. This means that the computer can perform a verification of the 
semantic correctness of such expressions.

Thus in summary: relations with any number of involvements of role 
players with their  roles of  particular  kinds can be expressed in a 
semantic model as a collection of elementary binary relations (level 
1). This makes that any relation (binary as well as a variable order or 
higher  order  relations)  can  be  represented  by  a  collection  of 
elementary  binary  relations.  Each  elementary  binary  relation 
expresses that a related thing plays a particular role in the relation. 
Thus there are as many elementary binary relations as there are roles 
played  in  a  relation.  This  makes  that  (collections  of)  elementary 
binary relations are a sufficient basis for the expression of any kind 
of idea.
Furthermore, pairs of elementary binary relations can be replaced by 
atomic  binary  relations  (level  2)  that  are  defined  by  the  explicit 
definition  of  implied  kinds  of  roles.  Each  atomic  binary  relation 
specifies the involvement of one thing in the relation. This simplifies 
the expressions and enables to represent higher order and variable 
order relations by a collection of binary relations. 

Using binary relations also for the expression of variable and higher 
order  relations  enabled  the  development  of  a  standard  universal 
Expression table that is suitable for the recording of any expression 
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in  Formal  English.  Each Expression table  has  the  same structure 
(table  column  definition).  That  universal  structure  is  defined  in 
chapter 15.

The expression of any idea in a semantic model follows one of the 
two fundamental universal semantic patterns: one pattern for ideas 
that  represents  information  about  individual  things  and  another 
pattern for ideas that represents knowledge or general requirements 
or definitions. Both patterns are explained below.

4.2 Individual things and kinds of things
There  is  an  essential  difference  between  kinds  of  things and 
individual things. Individual things typically have a location in time 
and space. They include not only individual physical objects in the 
real  world,  but  also  their  individual  aspects  (facets),  individual 
occurrences and individual relations as well as individual realistic 
(and  unrealistic)  imaginary  things.  Kinds  of  things,  also  called 
concepts (or classes of things), are abstract categories that can be 
used to classify things using criteria for inclusion or exclusion that 
define the concepts.

To enable computer interpretation it is required that a user of the 
language defines each new individual thing by at least two actions:

o Representing  the  individual  thing  uniquely  in  the  formalized 
language by allocating a UID conform the rules for allocating UIDs 
and by denoting it by a name.

o Specifying at least one explicit classification relation between the 
UID  and  a  UID  of  a  properly  defined  kind  of  thing  (concept  or 
qualitative  aspect,  also  called  a  value)  that  is  defined  in  a  formal 
taxonomic dictionary. 

4.2.1 Classification relations
Such a classification relation adds (the definition of) the individual 
thing to the vocabulary of Formal English and the statement about 
the classification should therefore be communicated to other parties 
when information about that individual thing is exchanged.
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Thus,  a  classification  relation indicates  that  something  is  an 
individual thing that is classified by the classifying concept or 
by that qualitative aspect. For example,

P-1 is classified as a pump
h-1 is classified as a height

Note  that  in  addition  to  classifying  individual  things  it  is  also 
possible to classify kinds, as will be discussed later.

4.2.2 Specialization and qualitative subtyping
Each new user defined kind of thing (or concept) shall also be added 
to  the  vocabulary  of  Formal  English.  This  shall  be  done  by 
allocating a UID conform the rules and by relating it to at least one 
other UID of a properly defined concept by a specialization relation 
or by one of its subtype kinds of relations, such as a qualification 
relation (denoted by the phrase <is a qualitative subtype of> or <is a 
type of>.

A  specialization relation indicates that the defined object is a 
kind of thing that is a subtype of the related supertype concept. 
The specialization relation is typically denoted by the phrase <is 
a kind of> or <is a specialization of>. For example,

thermometer is a kind of meter
repairing is a kind of activity

A qualification relation indicates that the defined thing is a type 
of thing or is a qualitative aspect (also called a value) that is a  
qualitative or quantitative subtype of an aspect. A qualification 
relation  is  typically  denoted  by  the  phrase  <is  a  qualitative 
subtype of> or <is a type of>. For example, a particular number 
and color can be defined as follows:

3.141592 is a qualitative subtype of number
red is a qualitative subtype of color

Whereas a type of physical object can be defined as follows:

M6 bolt is a type of bolt
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The use of these types of relations between new defined concepts 
and the standard Formal English concepts, together with an optional 
textual description, are required to define the meaning of new user 
defined concepts.
For example,  Table 16 is an Expression table that  states that  my 
bicycle pump, called P-1, is defined by a classification relation. 

54 2 101 43 1 60 3 15 201 65
Lang
uage

UID of 
left 

hand 
object

Name 
of left 
hand 
object

Intention UID 
of 

idea

UID of 
kind of 
relation

Name of 
kind of 
relation

UID of 
right 
hand 
object

Name of 
right 
hand 
object

Partial 
definition

English 101 P-1 assertion 201 1225 is 
classified 

as a

102 bicycle 
pump

English 102 bicycle 
pump

assertion 202 1146 is a kind 
of

130206 pump that is 
intended to 

inflate 
bicycle 
tires.

Table 16, Description of User Objects in an Expression table.

Assuming  that  the  concept  bicycle  pump  is  not  present  in  the 
taxonomic dictionary, it is added as a user defined concept. This is 
done  by  representing  it  by  a  UID  (102)  and  by  using  the 
specialization  relation  <is  a  kind  of>  to  relate  it  to  the  existing 
concept  ‘pump’.  If  the  concept  bicycle  pump  would  have  been 
available in the dictionary, the second line would be superfluous and 
the UID should have been taken from the dictionary.

Each  line  in  an  Expression  table  denotes  a  ‘main  atomic  idea’, 
represented by a ‘UID of idea’, and includes an expression of that 
‘main  atomic  idea’  (shortly  called  ’main  idea’),  together  with  a 
number of contextual facts. The main idea on the first line in Table
16 has  UID 201. It denotes the ‘assertion’ that P-1 is classified as a 
bicycle  pump.  That  ‘idea’  is  communicated  as  an  assertion  (the 
intention of  the expression).  Basically,  the idea is  expressed as a 
relation of kind 1225 (a classification relation) between object 101 
and object 102. The following contextual facts are shown in  Table
16: 

o The fact that the expression is in English 
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o The fact that 101 is called P-1 

o The fact that the expression is communicated with the intention of 
being an assertion 

o The fact that kind of relation 1225 is called ‘is classified as a’ (in 
English) 

o Etc. 

So,  an expression is  a  representation of  an atomic  idea,  or  more 
precise: of a proposition about an atomic fact in a context, whereas 
with a atomic idea is meant: something that is the case or might be 
the case.

The semantics of  a  line in an Expression table is  defined by the 
kinds of the relations between the columns in the Expression table. 
The relations between the columns in the table define the main idea 
and the contextual facts on the line. This is further discussed in par. 
13 and 13.4.3.

For example, line 1 in  Table 16 expresses the following ideas (in 
English):

1. User object 101 is an individual object with the name “P-1”. 

The fact that the object is an individual thing is inferred from 
the  kind  of  relation  <is  classified  as  a>,  because  a 
classification  relation  of  this  kind  is  defined  as  being  a 
relation between an individual thing and a kind of thing. This 
can  be  inferred  from  a  Gellish  formalized  language 
dictionary,  which  also  contains  the  language  definition, 
because  the  upper  ontology  section  of  that  dictionary 
contains two relations (with UIDs 1.003.840 and 1.003.573 
that express the ideas that a classification relation requires 
two  roles,  (1)  a  “classified  individual  thing”  and  (2)  a 
“classifier of an individual thing”. It also contains two other 
relations that express that the classified role can be played by 
an individual thing and the classifier role can be played by a 
kind of thing (a class).
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2. There is ‘main atomic idea’ with UID 201 that is expressed 
as a relation between object 101 and object 102.

3. The  idea  with  UID  201  is  classified  by  1225,  being  a 
standard  classification  relation  concept,  found  in  a  formal 
dictionary. This defines the meaning of the main atomic idea, 
being in this case that idea 201 is qualified as a classification 
relation.

4. Relation type 1225 is denoted as <is classified as a>. 
Note  that  this  denotation  is  already specified  in  a  Gellish 
formalized  language  dictionary  and  therefore  the  kind  of 
relation  name  is  semantically  superfluous  in  a  formalized 
English expression. However, the name is useful for human 
readability of the expression.

1. User object 102 is a kind of thing and has the name “bicycle 
pump”.
It is a general rule in formal English that a name is formally 
allocated to an object  only at  the left  hand side on a line 
where  the  object  is  defined  by  a  classification,  a 
specialization or a qualification relation, or on a line where 
the name is defined as an alias (synonym, abbreviation, etc.) 
or as a translation of an existing object name. Therefore, the 
fact  that  object  102  is  called  “bicycle  pump”  is  formally 
specified on the next line in the above example Expression 
table and is referred to on this line only (a verification of 
consistency  between  such  multiple  usage  of  names  is 
recommended to be done by software).

Line 2 is required to ensure that the right hand term of line 1 is a 
defined thing. Line 2 in Table 16 defines similar ideas as in line 1. 
Note the following ideas:

1. User  Object  102 is  a  kind of  thing (class)  with  the  name 
“bicycle pump”.
The fact that it is a kind of thing was already concluded from 
the kind of relation in line 1, but can also be concluded from 
the kind of relation on line 2 (see below)
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2. User Object 102 is a specialization of the existing Gellish 
UID  130.206  with  the  name  “pump”.  From  a  Gellish 
formalized  language  dictionary  it  can  be  inferred  that  the 
specialization relation is a relation with two roles: a subtype 
and a supertype, each of which is played by a kind of thing 
So, both the left hand object and the right hand object is a 
kind of thing, which is consistent with the fact that the right 
hand object of line 1 is a kind of thing.

3. User Object 102 has an additional relation with the textual 
definition in column 4, which specifies in natural language 
text in what respect a bicycle pump distinguishes itself from 
the general concept of a pump and from its ‘brother’ types of 
pumps.

Any other idea can be described in Formal English by usage of other 
kinds  of  relations.  A large  variety  of  available  standard kinds  of 
relations  are  defined  in  the  upper  ontology  section  of  a  Gellish 
formalized language dictionary.

4.3 Expression of ideas about individual things
In this paragraph we give a semantic analysis of expressions of ideas 
about individual things. We start with a statement about how such 
ideas are expressed in semantic models:

In  a  semantic  model  any  idea  that  represents  information 
about  an  individual  thing  is  expressed  by  a  relation  of  a 
particular  kind  together  with  a  specification  of  the  related 
things and the roles that they play in the relation. 

An example of a statement about an idea that is represented by a 
single binary relation is:

assertion: the Eiffel tower <is located in> Paris

Note:  Conventional  linguistics  treat  such  an  expression  (sentence)  as  a 
'model  of  (seven)  words',  whereas  a  semantic  model  treats  the 
expression as a model of (three) concepts. A semantic model is not a 
model of words, but a model of concepts. Therefore, the phrase 'is 
located in' as a whole is used as a name of a kind of relation. The 
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individual words in the phrase are irrelevant, which is opposed to 
conventional linguistic analysis of natural languages.

In the above example expression, the assertion that the Eiffel Tower 
is located in Paris is expressed by a location relation that implies two 
roles. The first one is a role of ‘being located’. This role is played by 
the Eiffel Tower. The second one is a role of ‘locator’, which role is 
played by Paris. This is graphically depicted in Figure 9.

Figure 9, Example relation with two roles and two role players

Thus,  such  an  idea  is  expressed  by  two  elementary  expressions. 
Each  consisting  of  two  (level  1)  elementary  relations:  an 
involvement relation and an ‘is played by’ relation. 

The meaning of an expression is provided through the specification 
of the nature of each of the individual components of the expression. 
Those natures are provided by the definitions of the kinds of things 
that classify the individual things (and not through the names of the 
individual things). Therefore it is a requirement that each individual 
thing is explicitly classified by at least one kind of thing, whereas 
that classifier shall  be defined in the dictionary of the formalized 
language. 

Thus, in order to capture the meaning of an expression, so that a 
software application can interpret the meaning, it is required to add 
classification relations that classify the role players, the roles and the 
relation. For example, in addition to the expressions in Table 12 we 
should add:

The Eiffel Tower is classified as a tower
Role-1 is classified as a being located
Relation-1 is classified as a is located at 
 (or ‘location relation’)

Note that the individual role players typically have a name, whereas 
their  (individual)  roles and relations have no name, because their 

82



classification is sufficient for the interpretation of the meaning of 
expressions.

The  combination  of  level  1  relations  and  these  classification 
relations in one model  results in a fundamental universal semantic 
pattern  comprising  five  binary  relations  that  are  required  for 
expressing the meaning of an idea about an individual thing. That 
structure is illustrated in Figure 10.

Figure 10, Universal semantic pattern for the expression of ideas 
about individual things

The five binary relations in such a pattern are:

o The classification of the relation (2)

And for every role in the relation there are four elementary relations, 
which are:

o The assertion that the relation requires a role (5)

o The classification of that role (6)

o The assertion that the role is played by an individual thing (4)

o The classification of that individual thing (3)

The semantic pattern of  Figure 10 illustrates that each idea about 
individual  things  can  be  expressed  as  a  classified  relation  (1) 
between  the  involved  classified  individual  things,  whereas  each 
individual  thing  plays  a  particular  classified  role  in  that  relation. 
According to the pattern, the relation between an individual thing 
and its role as well as the relation between that role and the relation 
are  expressed by  elementary (level  1)  relations.  This  can also be 
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expressed by inverse phrases for those relations. The inverse for <is 
played by> is <is player of> and the inverse of <is involving> is <is 
involved in>. Then the expression of the role of the Eiffel tower in 
the relation (1) becomes: 

4 The Eiffel tower is player of role-1 
5 role-1 is a role in relation-1

A similar collection of elementary relations can be created for the 
role of Paris in this relation.

For a correct interpretation of the expression the related objects, the 
roles as well as the relation need to be classified. This results in the 
following expressions of ideas:

3 The Eiffel tower is classified as a tower
4 role-1 is classified as a located (object)
2 relation-1 is classified as a is located in (relation) 

The above universal semantic pattern is usually not directly applied, 
because  it  can  be  simplified  while  still  keeping  its  semantic 
expression richness. There are two relevant simplifications.

4.3.1 Pattern for relations between individual things

As described in paragraph 4.1 the above pattern of Figure 10 can be 
simplified  for  the  expression  of  ideas  that  require  higher  order 
relations, such as correlations and models of occurrences. This can 
be done by replacing the two binary elementary level 1 relations (4) 
and (5) by one binary atomic level 2 relation (7), which is classified 
by a kind of level 2 relation (8), which leaves the roles implicit. This 
pattern is illustrated in Figure 11.
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Figure 11, Simplified universal semantic pattern for higher 
order relations between individual things

The kinds of involvement relations at level 2, as depicted in Figure
11, are defined such that they have by definition implied roles of 
particular kinds. One of those kinds of roles is the kind of role that is 
used to classify role-1 in Figure 10. 

A tabular representation of this pattern is given in Table 17.

UID of 
idea

Name of left 
hand object

Name of
kind of relation 

Name of right 
hand object

4 Object-1 is involved (as…) in Occ-1

2 Occ-1 is classified as a
kind of 

occurrence

3 Object-1 is classified as a
kind of physical 

object

Table 17, Pattern for higher order relations between individual 
things

For example, assume that the pattern of Figure 10 is used to express 
that  Object-1  (O-1)  is  involved  as  performer  in  higher  order 
Relation-1 (representing Occ-1). This means that role-1 in Figure 10 
is classified (6) as ‘performer’. We can then simplify the pattern by 
replacing the two elementary relations (4) and (5) by one atomic 
relation (7), which is classified (8) as a <is performer of> kind of 
relation.  The  <is  performer  of>  kind  of  relation  is  defined  as  a 
relation that requires by definition a first role as ‘performer’. 
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Definitions of such kinds of relations will be expressed by using the 
second semantic pattern, as will be discussed in paragraph  4.4. For 
the time being it is sufficient to assume that the definition of such a 
kind  of  relation  defines  which  kinds  of  roles  are  by  definition 
involved (and which kinds of role players can play such roles). For 
example,  the  kind  of  relation  <is  performer  of>  is  defined  by  the 
requirement to have as its first role a <performer> kind of role and as 
its second role a <performed> kind of role, whereas the definition also 
specifies which kinds of things can play roles of such kinds. Thus, the 
kinds of  roles are already defined by the definition of  the kind of 
relation,  which makes  the  classification (6)  of  the  individual  roles 
superfluous. 

A semantic interpretation of an expression that uses such a kind of 
level 2 relation can thus derive the kinds of roles from the definition 
of the kind of relation and therefore it is neither necessary to make 
the individual roles explicit, nor to classify them. 

Figure  11 presents  the  simplified  universal  semantic  pattern  for 
expression of relations of any arity.  This structure comprises one 
classification relation that classifies the (higher order) relation (the 
occurrence) (2) and three relations for every involved role player (3), 
(7)  and  (8).  This  semantic  pattern  is  especially  useful  for  the 
expression of unary, higher order, or variable order relations, such as 
occurrences, correlations and if-then-else relations.

When applied for the specification of an activity, this structure leads 
to  new  atomic  kind of  relations to  distinguish the  players  of  the 
various roles. For example:

7 John is performer of act-1
3 John is classified as a inspector

Whereas
2 act-1 is classified as a inspecting (relation)

And similarly:
7 P-101 is subject of act-1
3 P-101 is classified as a pump
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The kinds of roles, performer and subject, in the inspection activity 
can be inferred from the definition of the kinds of relations by which 
the atomic relations (7) are classified.

Thus,  higher  order  relations,  variable  order  relations  and  unary 
relations are expressed as collections of one or more of this kind of 
classified atomic binary relations. 

Unary relations

Semantic modeling usually distinguishes between unary, binary and 
higher order relations. A unary relation is an expression of an idea in 
which only one object is involved. A binary relation is a relation 
between two objects, etc. 

A typical example of the expression of a unary idea is a statement 
that expresses that a person is performing an activity of a particular 
kind. For example: ‘John is inspecting’. The semantic model of this 
example is given above.
However, this atomic relation is not the complete representation of 
what  is  occurring.  The  complete  idea  would  also  specify  which 
object is being inspected and possibly also e.g. which tools are used 
during  the  inspection.  This  illustrates  that  unary  relations  are 
usually,  if  not  always,  only  atomic  relations  and  thus  they  are 
incomplete expressions of  higher order ideas.  Unary relations are 
typically  relations  between  an  object  and  an  activity  or  process, 
whereas the object plays a role as performer or as subject. 

4.3.2 Pattern for binary relations between individual things

Many  ideas  appear  to  be  ideas  that  can  be  expressed  as  binary 
relations, being units of communication in which exactly two things 
are involved, each with their  own role of a particular kind.  Such 
binary  relations  can  be  expressed  by  using  a  further  simplified 
semantic pattern. This simplification can be achieved because such 
ideas  require  always  two atomic  level  2  relations.  Such  pairs  of 
atomic relations can be replaced by one molecular level 3 relation. 
This  simplification  results  in  the  simplified  universal  semantic 
pattern of Figure 12. 
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Figure 12, Simplified universal semantic pattern for binary 
relations between individual things

Figure 12 presents graphically a pattern for the expression of binary 
ideas about individual things. Such an idea is expressed as a binary 
relation between ‘any individual thing’ and another individual thing. 
That second individual thing is represented in Figure 12 by the same 
box, called 'any individual thing', as the first individual thing. Thus 
the  expression  of  a  complete  molecular binary  idea  comprises  a 
specification of two role players and a binary relation at level 3, each 
with its classification. 

Each  level  3  kind  of  binary  relation  according  to  the  pattern  of 
Figure 12 is defined such that it requires by definition two roles of 
kinds that are the kinds of roles that classify two roles played by two 
role players of the pattern of Figure 10. 

The pattern of  Figure 12 does not define for each of the individual 
role players which of the two roles it actually plays. The definition 
of the kind of relation only specifies the kind of role player that may 
play the first role and the kind of the one that may play the second 
role. In natural languages the role player that plays the first role and 
the one that plays the second role is determined by the grammar of 
the language. However, those grammatical conventions are natural 
language dependent.  According to  the English language grammar 
the  roles  are  determined  by  the  phrase  that  denotes  the  kind  of 
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relation and the corresponding sequence of the role players from left 
to  right.  The syntax of  the formalized language therefore  defines 
which role player is specified to play the first and which one the 
second role. This is further discussed in chapter 13.

For  example,  a  part-whole relation is  a  binary relation,  with two 
involved individual things, one with a role as a part and the other 
with a role as a whole. Those kinds of roles would be explicit when 
we would use the pattern of Figure 10. According to the pattern of 
Figure 11 the model would be simplified as:

P-1 has a role as part in assembly relation-1
W-1 has a role as whole in assembly relation-1

To enable to directly relate the two involved things, P-1 and W-1, 
we need to define and use a  molecular kind of binary relation at 
level  3  that  implies  by  definition  the  two  atomic  involvement 
relations at level 2 and the four elementary relations and the two 
roles with their classification at level 1. 

For  example,  we can define a  molecular  level  3  kind of  relation 
called <is a part of>, which by definition requires two roles, the first 
one classified as a ‘part’ and the second one classified as a ‘whole’. 
This enables to express a binary part-whole relation as follows:

P-1 is a part of W-1

The  semantics  of  such  a  binary  expression  is  included  in  the 
definition  of  the  kind  of  relation,  which  includes  an  explicit 
specification of the kinds of roles that are played by the related role 
players and the explicit specification of which kinds of things may 
play  roles  of  such  kinds.  The  latter  specification  can  be  used  to 
semantically verify whether the classifiers of the role players (e.g. 
the classifiers of P-1 and W-1) comply with the allowed kinds of 
role players.

The definition of such a binary relation uses the same pattern of 
Table 14 that was developed for the simplification from level 1 into 
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level 2. For example, by using that pattern, the definition of a part-
whole relation becomes as is presented in Table 18:

Name of left 
hand object

Name of kind of 
relation

Name of right 
hand object

Definition of 
left hand object

is a part of
has by definition as 
first role a

part

is a part of
has by definition as 
second role a

whole

part is defined as a kind of role is a role that….
whole is defined as a kind of role is a role that….
part can be played by a individual thing
whole can be played by a individual thing

Table 18, Definition of a part-whole relation between individual 
things

Figure 12 uses one box to represent two related things in a binary 
relation, just as Figure 11 uses one box to represent any number of 
related things in a higher order relation. For clarity an alternative 
representation of the pattern of  Figure 12 is given in  Figure 13, in 
which each role player is represented by its own box.

Figure 13, Alternative presentation of the simplified universal 
semantic pattern for binary relations between individual things

The relation R-1 (1) and its classification (2) can be expressed on 
one line. Therefore, a general pattern for the expression of binary 
ideas about individual things becomes:
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Table 19, Pattern for expressing binary ideas 
about individual things

For  example,  assume  we  want  the  computer  to  interpret  the 
expression of a statement about a binary idea, such as:

101 the Eiffel tower is located in Paris

This expression shows only three components: the first and last one, 
the  Eiffel  tower  and  Paris,  are  both individual  things  that  are 
represented by the boxes Role player-1 and Role player-2 in Figure
13.  The phrase  <is  located in> represents  a  kind of  relation that 
classifies (2) the individual relation (1). Thus that kind of relation is 
an  example  of  a  concept  at  the  upper  side  of  the  figure.  For  a 
complete interpretation it is required that a computer also knows of 
what  kind  the  two  related  individual  things  are.  The  individual 
things are defined by their explicit classification relations (3A and 
3B).  For  example  this  results  in the  following  additional 
expressions:

102 the Eiffel tower is classified as a building
103 Paris is classified as a city

The roles that are played by the Eiffel tower and Paris are individual 
roles. The kinds of roles are always the same for all relations of the 
same kind. Therefore, the kinds of roles that are played in a relation 
of a particular kind are defined as part of the definition of the kind of 
relation. This implies that the classification relations for the roles 
can be deduced from the definition of the kind of relation and don't 
need to be included explicitly in each expression for binary ideas 
about  individual  things.  In  the  above  example  those  roles  are 
'located' and 'locator' respectively.
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The explicit classification of the related individual things enable a 
computer  to  verify  the  semantic  correctness  of  the  expressions, 
because the definition of the kind of relations define which kinds of 
things  may  play  roles  of  the  required  kind.  In  this  example,  a 
computer can conclude that both related thing are individual things, 
because the definition of a classification relation specifies that the 
first  role  is  played  by  an  individual  thing.  Furthermore,  the 
definition of a relation, such as the <is located in> relation, specifies 
that both role players should be physical objects. This means that the 
classifiers,  being  building  and  city,  should  both  be  subtypes  of 
physical  object.  Whether  that  semantic  requirement  is  satisfied 
should be verified via the relations in the taxonomic dictionary of 
the formalized language.

4.4 Expression of ideas about kinds of things
Any idea  that  represents  knowledge  about  a  kind  of  things  or  a 
general  requirement  or  a  concept  definition  is  expressed  in  a 
semantic model as a relation between kinds of things. To enable the 
interpretation of the expression it is insufficient to only record the 
relation itself, because it is required to include additional relations 
that define the used concepts. 

A  concept  definition  model  includes  at  least  one  specialization 
relation with a direct supertype of the concept and a description of 
the relation(s) that specify an additional constraint with regard to the 
supertype concept, which constraint distinguishes the subtype from 
other  subtypes  of  the  same supertype.  The  specialization  relation 
expresses  that  the  defined  concept  is  a  proper  subtype  of  that 
supertype  concept.  Such  a  specialization  relation  means  that  the 
defined concept inherits the definition and all other ideas about the 
supertype concept, including its possible roles in relations (except 
for its names). The specification of the distinguishing constraint may 
be specified as free text and/or may be defined by one or more ideas 
about  the  defined  concept  that  are  by  definition  the  case.  The 
specialization relation is further discussed in par. 9.1

Ideas that represent  knowledge include knowledge about what  can 
be the case as well as knowledge about what is by definition the 
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case. General requirements include states of affairs that shall be the 
case  in  a  particular  context.  Each of  such a  category of  ideas  is 
expressed by using its own kind of relation.

For example, expressions of knowledge about what is by definition 
the case are:

(any) house has by definition as part a roof 

flat roof is (by definition) a specialization of roof

The ideas about what is by definition the case only define what the 
essential characteristics of such a kind of thing is. This means that a 
thing that does not comply with that essertion is not a thing of that 
kind. Thus, this definition states that something without a roof is not 
a (well formed) house (yet).

An example of a general requirement is that in a particular context it 
may be specified as a requirement that:

(any) house shall have as part a flat roof

For a correct interpretation of the meaning of 'house', 'roof' and the 
various  kinds  of  relations  (relation  types) shall  be  defined  in  the 
formal dictionary.

Thus, because of their definition, each kind of thing has at least one 
specialization relation with a supertype kind of thing. This means 
that  a  subtype-supertype  hierarchy  of  relations  between  kinds  of 
things is  resulting.  In other words the concepts are arranged in a 
Taxonomy hierarchy. This also holds for the kinds of relations. This 
has additional benefits, because each kind of relation is defined in 
such  a  way  that  it  constrains  the  related  objects  to  objects  of 
particular kinds. For example, only physical objects can be located 
in physical objects. Therefore, the <is located in> relation requires 
that each located thing and each locator thing is a physical object. To 
enable the verification of that constraint it is required that concepts 
such as 'building' and 'city', etc. all are defined in the Dictionary as 
subtypes  of  the  concept  'physical  object'.  Only  then  the  subtype-
supertype hierarchy of concepts (the Taxonomy) enables automated 
verification whether an expression is semantically allowed.
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These  general  requirements  on  expressions  are  the  cause  that  a 
universal  semantic  pattern  is  discovered  that  specifies  what  is 
minimally required for the expression of the meaning of a unit of 
communication about kinds of things. That pattern is presented in 
Figure 14.

Figure 14, Universal semantic pattern for the expression of ideas 
about kinds of things

This pattern has similarity with the universal pattern for expressions 
about individual things as presented in  Figure 10, but the concepts 
and  the  kinds  of  relations  are  different.  The semantic  pattern  of 
Figure 14 illustrates how ideas that represents knowledge or general 
requirements  about  a  kind   of  thing  are  expressed.  A  complete 
expression comprises:

o A kind of  relation (11)  and its  definition as  specialization of  a 
supertype kind of relation (12)

And for each involved kind of thing it comprises:

o A pair of elementary relations (14) and (15) that the particular kind 
of thing is involved in a role of a particular kind

o Two a specialization relations, one to define the nature of the kind 
of thing (13) and another to define the kind of role (16). 

This  pattern  is  used  for  the  definition  of  kinds  of  relations.  The 
definition of a kind of relation includes:

o A specification of the kinds of roles that are by definition played in 
such a kind of relation. 

o For each kind of role a specification of the kinds of things that can 
be player of such a kind of role. 
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The  pattern  for  the  definition  of  a  kind  of  relation  with  a 
specification of one of its kinds of roles becomes in tabular form as 
is presented in Table 20.

UID 
of 

idea

Name of 
left hand object

Name of kind of 
relation

Name of
right hand object

12 kind of relation-1 is a kind of kind of relation-2

17 kind of relation-1 has by definition 
as first role a

kind of role-1

18 kind of role-1 is a kind of kind of role-2

16 kind of role-1 can be played by 
a

kind-1

13 kind-1 is a kind of kind-2

Table 20, Patter for the definition of kinds of relations

Each  component  in  an  expression  is  a  kind  of  thing  or  concept 
that shall be included in the dictionary of the formalized language; 
together  with  its  definition (i.e.  it  shall  be  included in  a  Domain 
Dictionary or in a proprietary extension). As a proper definition of a 
concept should be computer interpretable, the definition of a concept 
shall be modeled and may not be just human readable free text. 

4.4.1 Pattern for relations between kinds of things
Constraints can be specified on kinds of roles that  are played by 
particular kinds of role players. The specification of such constraints 
requires making such kinds of roles explicit. When such constraints 
are not applicable on roles in higher order relations, then for proper 
interpretation it  is sufficient to know the kind of role that can be 
deducted  from  the  definition  of  the  kind  of  relation  or  that  is 
inherited from the definition of a kind of relation that is higher in the 
taxonomy  hierarchy.  Therefore  for  most  applications  it  is  not 
required to make the kind of role explicit. This enables to simplify 
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the semantic pattern for higher order relations as presented in Figure
15.

Figure 15, Simplified universal semantic pattern for higher 
order relations between kinds of things

A tabular representation of this pattern is presented in Table 21.

UID 
of 

idea

Name of left 
hand object

Name of kind 
of relation

Name of right 
hand object

14 kind-1 can be involved 
(as a…) in a

kind of 
occurrence-1

15 can be involved 
(as a…) in a is a kind of kind of involvement 

in an occurrence

12 kind of 
occurrence-1 is a kind of kind of 

occurrence-2

13 kind-1 is a kind of kind-3

Table 21, Pattern for higher order relations between kinds of 
things

There  are  many  kinds  of  involvement  relation  and  kinds  of 
occurrences  defined  in  the  Dictionary  as  will  be  discussed  later. 
They are not only kinds of relation for expressing knowledge, such 
as  <can  be  a  performer  of  a>  kind  of  relation,  but  also  for  the 
expression  of  requirements  and  definitions,  such  as  <shall  be 
performer of a> and <is by definition a performer of a>.
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4.4.2 Pattern for binary relations between kinds of things

For binary relations between kinds of things both kinds of roles can 
be derived from the definition of the kind of binary relation. This 
enables a further simplification of the semantic pattern as follows:

Figure 16, Simplified universal semantic pattern for binary 
relations between kinds of things

Thus a general expression of a binary relation between two kinds of 
things becomes:

o Some kind of thing plays a kind of role in a kind of relation in 
which another kind of role is involved that is played by another kind 
of thing, 

In other words:

o Something of a particular kind plays a role of a particular kind in a 
relation of a particular kind in which another role of a particular kind 
is involved that is played by another thing of a particular kind. 

The box at the left hand corner of Figure 16 represents two different 
related kinds of things. For clarity an alternative representation of 
the pattern of Figure 16 is given in Figure 13, in which each related 
kind of thing is represented by its own box.
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Figure 17, Alternative presentation of the simplified universal 
semantic pattern for binary relations between kinds of things

A tabular representation of this pattern is presented in Table 22.

UID 
of 

idea

Name of left 
hand object

Name of kind of 
relation

Name of right 
hand object

11 kind-1 can be related to a kind-2

12 can be related to a is a kind of
binary relation 
between kinds

13A kind-1 is a kind of kind-3

13b kind-2 is a kind of kind-4

Table 22, Pattern for binary relations between kinds of things

The various kinds of relations that are defined in the Dictionary are 
discussed in chapter 9 and 10. Those kinds of relations include kinds 
of relations to express knowledge, requirements and definitions.

4.5 Integrated semantic patterns
The correct interpretation of expressions about individual things in a 
formalized  language  always  requires  the  classification  of  the 
individual things, as well as the definition of the classifying concepts 
by means a taxonomic dictionary of concepts. Therefore it requires 
the combination of the semantic pattern for the expression of ideas 
about individual things and the semantic pattern for the expression 
of ideas about kinds of things.  This combination of the universal 
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semantic patterns of Figure 10 and Figure 14 is presented in Figure
18.

Figure 18, Integrated universal semantic pattern

The  lower  part  of  the  pattern  is  universally  applicable  for  the 
expression of information about individual things; the upper part is 
applicable for the expression of definitions of concepts as well as for 
the expression of knowledge and requirements.

The  simplified  version  of  the  integrated  pattern  for  higher  order 
relations,  such  as  occurrences,  correlations  and  conditional 
consequence (if-then) relations is given in Figure 19.
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Figure 19, Simplified integrated semantic pattern 
for higher order relations

The simplified version of the integrated pattern for binary relations 
is given in Figure 20.

Figure 20, Simplified integrated semantic pattern
for binary relations

Note that the term ‘simplified’ indicates that the roles are implicit.
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4.6 Bootstrapping the formal definitions
Defining  concepts  in  a  formalized  language  requires  the  use  of 
already pre-defined concepts. Avoiding circular definitions implies 
that  an initial  list  of ‘bootstrapping’ concepts should be available 
that form the basis for the definition of further concepts. Semantic 
analysis of formalized language definition resulted in the discovery 
that  formal  expressions  follow  the  above  described  universal 
semantic  patterns.  Furthermore it  was concluded that  the patterns 
that are required for concept definitions and the allocation of terms 
to  concepts  requires  only  the  bootstrapping  kinds  of  relations  as 
given in Table 23.

Name of kind of relation
Phrase that denotes the kind 
of relation

specialization relation is a kind of
by definition having a first role has by definition as first role a
by definition having a second role has by definition as second role a
possibly playing a role can play a role as a
naming relation is called

Table 23, Bootstrapping kinds of relations

The bootstrapping kinds of relations themselves can be defined in 
the same way as defining other concepts, although their definition 
models make use of the bootstrapping kinds of relations themselves.

Phrases that denote kinds of relations have a reading direction that 
specifies which role player is  located at  the left  hand side of the 
phrase and which one is located at the right hand side. To enable the 
use  of  inverse  phrases  and  thus  for  distinguishing  phrases  from 
phrases  that  require  an inverse  position of  the  role  players   it  is 
necessary to  distinguish to  ways of  naming (two subtypes of  the 
naming relation). For practical reasons and for remaining close to 
the natural language way of denoting synonyms, the following two 
kinds of relations are added to the list of bootstrapping relations 

synonymy relation is a synonym of
inverse synonymy relation is an inverse of
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The  only  additional  required  concept  is  the  top  concept  of  the 
taxonomy of concepts, called ‘anything’ and possibly its counterpart 
‘nothing’. The concept ‘anything’ can be defined as ‘that what can 
be thought of’.

On the basis of these bootstrapping concepts it is possible to build 
the whole language defining ontology. These bootstrapping kinds of 
relations are therefore the only kinds of relations that are used in the 
upper  ontology  to  define  the  basic  concepts  of  the  formalized 
language.
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5 Vocabulary and identification

In natural language things are usually denoted by names, but also by 
other  terms,  such  as  abbreviations,  codes,  translations,  drawing 
numbers, document titles, phrases, symbols, etc. Those names, etc. 
form the vocabulary of the language. In practice the same thing is 
often denoted by multiple different terms. Each denotation typically 
originated  or  is  based  in  some  language  community  (also  called 
‘speech  community’),  although  it  may  be  used  also  outside  its 
‘native’  language  community.  Sometimes  things  are  denoted  by 
concatenated terms,  such as  addresses  or  concatenated codes  and 
sometimes  things  are  denoted  indirectly,  whereas  they  may  be 
nameless. Finally in systems and on the Internet, things are denoted 
by identifiers that include resource names and paths to directories. 
This chapter discusses those various kinds of denotations and thus it 
discusses the vocabulary of Formal English.

5.1 UIDs, names and synonyms
In  a  formalized  language  everything  needs  an  unambiguous 
identification, but there is also a requirement for multiple denotation 
of  something  in  different  contexts.  For  example,  things  may  be 
denoted by a term or name as well as by a synonym and by a code 
and by different names in other languages. On the other hand the 
same term may be a denotation for different things, when used in 
different contexts, thus used as a homonym. These are reasons to 
distinguish  between  the  representation  of  something  ‘itself’  and 
various terms to denote it. 

5.1.1 Unique identification
Everything is  represented  in  a  formalized  language  by a  ‘unique 
identifier’  (UID).  Although  there  is  a  subset  of  the  formalized 
language defined that allows for the use of ‘names’ as identifiers, 
but in that subset the use of homonyms is not allowed. 

Note:  Without  homonyms the  (preferred)  terms can  be  used  as 
UIDs.  However,  such  terms  do  not  uniquely  identify  things, 
because  of  the  existence  of  synonyms,  abbreviations,  codes, 
translations, etc. Therefore in such cases software should verify for 
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every term whether there are possibly relations in which (explicitly 
declared)  synonyms,  etc.  are  specified  and  whether  there  are 
relations specified for such aliases.

A unique UID in Gellish forms an unambiguous identification of a 
unique identity within the Gellish family of formalized languages. A 
UID is in fact an arbitrary symbol that is meaningless and thus does 
not contain any information about the thing it represents. A UID is 
also  natural  language  independent.  Thus  a  UID  that  is  used  in 
Formal English represents the same thing as that UID when used in 
Formal Dutch, etc. A UID is not a key in the IT sense, because a 
UID  does  not  represent  a  combination  of  aspects  that  together 
uniquely identify something. 

External  identifiers  from  coding  systems  other  than  Gellish  that 
identify things that are also known within the Gellish language are 
normally treated as  alias  names or  codes in  Gellish,  whereas the 
coding system has a  role  as  language community.  Other  external 
identifiers  may  be  used  as  Gellish  identifiers  provided  that  they 
satisfy  specific  conditions.  This  is  further  discussed  in  paragraph 
5.2. 

Everything  shall  have  a  UID;  as  it  represents  the  identity  of 
something in the formalized language. Something without a UID is 
not represented and cannot be talked about. A UID may not change 
during the life of the thing it represents. There may not be another 
thing that has the same UID. This is independent of the contexts in 
which the UID is used.

The UID of anything that is standard in Gellish is a natural number 
(a  positive integer),  except  for  strings,  numbers  and user  defined 
identifiers. Strings are unique in themselves, numbers are prefixed 
by a hash character (#) as is explained in detail in appendix A and 
user defined identifiers are (preferrably natural numbers) preceded 
by a prefix that is chosen by that user, followed by a colon (:). This 
enables software to automatically generate new UIDs provided that 
the  allowed  range  is  specified.  The  range  of  UIDs  below 
3.000.000.000  is  reserved.  UIDs  above  that  number  are  free,  as 
described below. Within the Formal English language definition the 
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reserved  range  is  subdivided  in  the  following  ranges  (the  upper 
values are not included in the ranges):

1-100: Unknowns, optionally preceded by the prefix ‘unkn:’
This range is reserved for the identification of objects (or 
collections of objects) that are ‘unknowns’. Thus, the use 
of a UID in this range means that the object is unknown. 
Typically  such  unknowns  are  used  in  Formal  English 
Queries in which the identity of such a thing or things is 
requested. For example, the UID of the left hand object 
in the following question is 1 with the name ‘what’. That 
‘object’ or collection of objects stands for an unknown 
collection  of  pumps  (with  their  real  UIDs)  as  will 
become known in the answer to the question.

UID of 
left hand 

object

Name of left 
hand object

UID of 
kind of 
relation

Name of kind of 
relation

UID of 
right hand 

object

Name of 
right hand 

object
1 what 1225 is classified as a 130206 pump

100-1000 Testing.  
This  range  is  reserved  for  testing  and  demonstration 
purposes. 

1000-15.000.000 
Language definition.
This range is reserved for the definition of concepts in 
the  Taxonomic  Dictionary.  UIDs  in  this  range  are 
allocated by the formalized language manager.

dd:yyyymmdd:hh:mm:ss.decimal 
Date-Time.
This notation has a prefix dd: followed by a date. For 
example the UID 20111126 shall be interpreted as 2011 
11 26, or 26th of November 2011. If the two digits for the 
day are missing, then a whole month period is meant. If 
the  two digits  for  the  month  are  also  missing,  then  a 
whole year is meant. For example: 201111 indicates the 
month November in the year 2011. Optionally the date is 
followed  by  a  colon  (:)  that  is  followed  by  an  hour, 
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optionally followed by a colon and a minute,  optionally 
followed  by  a  colon  and  a  number  that  represents  a 
second and optionally a dot (.) and a decimal part of a 
second.  For  example,    UID  dd:20111126:12:1:1.5 
denotes 1 minute and 1.5 second past noon at the above 
date.  

The relation between UID and number is described in chapter Fout:
Bron van verwijzing niet gevonden, Fout: Bron van verwijzing niet
gevonden.

Non-numeric identifiers
User  defined  UIDs  should  be  preceded  by  a  prefix, 
except when they are allocated a numeric range by the 
formalized language manager,  provided that they obey 
the rules as described in par. 5.2.

Names and phrases
Names and phrases (terms) are character strings. Such a 
character string is a unique sequence of characters in its 
own right and therefore does not need an additional UID. 
Note that a character string may have various roles to 
denote  different  things  (homonyms).  Therefore  a 
character string that is used as a name or phrase is not a 
Gellish UID.

Literals
It  is  a widely used practice to allow for values that  are free text 
strings,  typically  denoted  as  ‘literals’.  However,  the  concept  of 
literal is not a semantic concept and it does not bear any meaning. 
Typically a ‘literal’ is expressed in a particular language and can 
only be interpreted by a human who understands that language. In 
Gellish  formalized  languages,  all  concepts  should  be  a  defined 
meaning,  so  that  most  ‘literals’  should  be  defined  as  qualitative 
subtypes of generic concepts. For example, instead of a literal for 
denoting a color such as ‘red’, the concept ‘red’ shall have a UID 
and shall be defined as a qualitative subtype of the concept ‘color’. 

Uniqueness of UIDs
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The formalized language is defined such that each concept (whether 
an individual or a kind) is only represented by only one UID. Thus, 
if something is searched for, and its UID is found, then in principle 
there is no need to continue searching in order to find another UID 
that represents the same thing. Thus, in principle it is not allowed 
that  different  UIDs  represent  the  same  thing  in  the  formalized 
language. Therefore, any two different UIDs will always represent 
different things, except for possible errors in the language definition. 
However, for non-numeric identifiers and identifiers with prefixes, 
the  responsibility  for  allocating  UIDs  is  distributed  to  various 
independent  organizations;  and  thus  the  responsibility  for 
maintaining consistency and for  avoiding that  multiple  identifiers 
identify the same thing is the responsibility of the organization that 
uses  such  UIDs.  Therefore,  it  is  recommended  that  organization 
reserve one or more ranges for their proprietary concepts and verify 
the uniqueness of those concepts and coordinate the addition of new 
concepts with the formalized language manager.

Examples of UIDs

Standard Gellish concepts have for example the following UIDs:

1.225 is classified as a
130.206 pump
551.564 capacity (mass flow rate)
927.838 5.0
570.449 dm3/s

User  defined  things  of  organizations  that  have  provided  with  a 
reserved range might have for example the following UIDs:

40.000.001 P-6501
40.000.002 capacity of P-6501
101.001.001 valve type A
501.001.002 nominal diameter of valve type 

A
601.001.003 idea 1501001002
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Examples of non-numeric UIDs

Examples of external UIDs that may be used as UIDs in Gellish are 
CAS registration numbers for chemicals.  For example the Gellish 
UID that identifies 1,1,2-trichloroethane is CAS:99-00-5.

Gellish UID Name in English
CAS:99-00-5 1,1,2-trichloroethane
CAS:7732-18-5 water

Notes:
1. Usage of external UIDs does not guarantee unambiguous 

UIDs. For example, water also has a Gellish UID (430266). 
Thus two things that are classified using different UIDs are 
not recognized as being of the same kind, unless there is an 
explicit  statement  that  states  that  they  identify  the  same 
thing and software ensures its implications. For example: 

CAS:7732-18-5 <is the same thing as>  430266

2. Systems such as the CAS Registry have their own purpose 
and  conventions.  For  example,  the  CAS  registration 
numbers  identify  pure  chemical  substances  or  molecules. 
Gellish allows for a classification as water, while the purity 
is not 100%.

3. CAS  only  distinguishes  substances  on  their  chemical 
structure and thus it does not distinguish between e.g. liquid 
water, ice, and water vapor or steam, because they are all 
chemically  identical,  whereas  the  Gellish  dictionary 
includes subtypes of water depending on their state, even 
including concepts such as high pressure steam, saturated 
steam, etc.

Sameness

When the uniqueness of UIDs cannot be expected, there may be a 
need to specify that two different UIDs nevertheless represent the 
same thing, even when their names are different. 
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Figure 21, Sameness of something represented by two UIDs

Figure 21 illustrates that there is a standard kind of relation defined 
that specifies that two different UIDs represent the same thing, even 
if the names are different An example of the use of such an 
expression is:

Intention UID 
of 

idea

UID of 
left hand 

object

Name of 
left hand 

object

Name of 
kind of 
relation

UID of right 
hand object

Name of 
right 
hand 
object

statement 201 20001 name-1 is the same 
thing as

31002 name-2

Note that the above kind of relation is not applicable in the standard 
Gellish formalized languages, but only in extended Gellish in which 
it is not guarantee that UIDs are really unique identifiers of things.

5.1.2 Naming and description
The various denotations of something (denotations by terms such as 
names, codes and abbreviations) and their descriptions or definitions 
may  vary  in  various  language  communities  and  in  various 
languages. 

Figure 22, Naming, description and definition

Therefore, as illustrated in Figure 22, multiple description relations 
are required to relate the multiple terms and other text strings to the 
UIDs, whereas the kind of relation indicates whether a text string is 
a  (has  a  role  as  a)  name,  description  of  definition.  Each term is 
allocated with a basis in its own ‘native’ language community. A 
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language community can be either a discipline, or an organization, 
an application system in which particular codes are used, etc. 

Figure 23, Naming of things

Figure  23 illustrates  that  one concept  can be  denoted by various 
terms  in  different  language  communities  (that  act  as  naming 
contexts). For example, the concept represented in Formal English 
by  UID  430266,  is  denoted  in  English  as  water  and  is  denoted 
internationally in chemistry as H2O. Thus the term water belongs to 
the English vocabulary and the term H2O belongs to an international 
vocabulary. Both terms are allocated in Formal English to concept 
430266, the first one in a materials engineering language community 
context, the second one in a chemistry language community context.

Note that in general it is a rule that, if a term is allocated to a concept 
in a particular language community, then that term is the ‘preferred 
term’ for that concept in that language community.

It is a uniqueness rule in Formal English that within a combination 
of a language and a language community context a concept shall be 
named by only one term. (In principle multiple unique terms are 
allowed, but then it would be unclear which term is the preferred 
term). In other words, within a language community in a particular 
language something is  uniquely identified by the (then preferred) 
term. Thus the combination [language, language community, term] 
is a ‘unique key’ for anything in Formal English.
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The  allocation  of  names  (terms)  to  concepts,  including  their 
language and language communities can be expressed in a simplified 
form as a table as follows:

UID Language Language community Name of 
kind of 
relation

Name of thing

43026
6

English materials engineering is called water

43026
6

Internationa
l

chemistry is called H2O

Table 24, Naming table with synonyms

The  columns  in  a  Naming  table have  relations  that  represent  a 
meaning. The kinds of relations that classify the relations between 
the cells in the columns are illustrated in Figure 24.

Figure 24, Relations between columns in a Naming table

These  multi-naming  possibilities  enable  companies  to  act  as 
language communities  within  Formal  English.  Thus  they can use 
Formal  English  and  nevertheless  use  their  own  terminology  to 
denote things for concepts that are known to others under different 
names. They can even add their proprietary concepts and allocate 
terms that  have a  specific  meaning that  is  only  valid  within  that 
company. Large companies and governments sometimes have their 
own terminology management organized to avoid ambiguity.
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5.1.3 Aliases and synonyms
If aliases are used, then it is desired to specify whether an alias term 
is a synonym or an abbreviation or a code, etc. for another term for 
the same thing. To enable specifying the relation between an alias 
term and a base term there are a large number of subtypes of the 
alias relation defined that can be used to specify the precise role of a 
term  in  relation  to  another  term.  Most  of  those  subtypes  are 
presented in Figure 25.

Figure 25, Subtypes of the alias relation
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Some codes or  terms are  alternative denotations (alias  terms)  for 
things that have already another term as its preferred name in some 
language community (context). For example, a technical drawing is 
typically  primarily  denoted  by  a  drawing  identifier,  such  as 
‘T-123.456 Sheet 3 Rev 2’. However, such a drawing usually also 
has  a  title  and  may  have  a  subtitle.  Both  title  and  subtitle  are 
alternative ‘names’ for the drawing that may be used for searching 
the drawing. Some systems may record even the sheet number of a 
drawing as a separate item (field in a database). The drawing may 
also be denoted by a page number, when being part of a volume. All 
such denotations denote the same drawing which is represented by a 
UID.  For  example,  assume  that  the  UID  is  123.  Then  these 
alternative denotations are expressed as follows:

UID of 
left hand 
object

Name of left hand 
object

Name of kind of 
relation

UID of 
right hand 
object

Name of 
right hand 
object

123 T-123.456 Sheet 3 Rev 2 is qualified as a 490196 drawing
123 T-123.456 Sheet 3 Rev 2 has as title 123 A-1 layout
123 T-123.456 Sheet 3 Rev 2 has as sheet number 123 3

Table 25, Alternative denotations for a drawing

Note that all the alternative denotations are treated as names of the 
same UID. When a denoted object is recorded as being a part of a 
larger whole, then the larger whole acts as a natural context within 
which a name of a part should be interpreted. Therefore, alternative 
denotations usually do not need language community contexts.  In 
the above example, T-123.456 might be recorded as a (name of) a 
collection of sheets and revisions of sheets that acts as a (language 
community)  context  for  the  sheet  number.  Nevertheless,  it  is 
possible  to  add  an  explicit  language  community  in  a  formalized 
English expression, especially when inverse relations of the above 
ones are used (further details.
Occurrences, such as activities, processes and events can be denoted 
by  nouns,  as  well  as  by  other  forms,  such  as  active  forms.  For 
example, the terms activity, acting and action are aliases, although 
one is a noun and the other is a verb5.

5 This  illustrates  that  the  concepts  ‘noun’  and  ‘verb’  don’t  denote  a 
semantic distinction, but only a grammatical distinction. The same holds 
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5.1.4 Mapping of organization’s terminology
A mapping  between  terms  used  in  a  particular  organization  and 
terms  in  the  Formal  Dictionary  is  a  mapping  between  different 
language communities. The organization should use existing UIDs 
from the Dictionary for existing concepts even when the names are 
different. 

For existing concepts a mapping table thus uses expressions with the 
same UID at the left hand side as at the right hand side, but with 
different terms. This is illustrated in Table 26.

UID of 
left hand 

object
Language

Language 
community

Name of 
left hand 

object

Name of kind of 
relation

UID of 
right hand 

object

Name of 
right hand 

object
430266 English medical aqua is a synonym of 430266 water
430266 English Company X water is the same as 430266 water

430266 German
materials 

engineering
Wasser is a translation of 430266 water

430266 International chemistry H2O is a code for 430266 water

Table 26, Mapping table

A mapping table uses primarily the <is a synonym of> relation to 
denote that a term that is used in the company (or other language 
community) is a synonym of a term that is used in the Dictionary for 
the same concept. The fact that it is the same concept is indicated 
that the same UID is used on the left hand side as on the right hand 
side of the expression.

If the two terms are identical, then the <is the same as> relation can 
be used. It denotes that the name is identical to an already allocated 
name for  a  particular  concept,  but  the  language communities  are 
different.  Thus  in  a  particular  language  community,  such  as 
Company X, the same term is used as preferred term as the term that  
is  specified  for  another  language  community.  In  principle  this 
statement is superfluous, but for completeness it is recommended to 
include such equalities.

for  the  concepts  ‘subject’  and  ‘object’,  because  the  same  (semantic) 
meaning  can  be  expressed  in  an  expression  as  well  as  in  its  inverse 
expression, whereas the thing that has a role as subject in an expression has 
a role as object in the inverse expression, without a change of meaning.
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Only  if  a  concept  or  individual  thing  is  not  yet  included  in  the 
Dictionary, neither the same name, nor under an alias name, then an 
organization  should  introduce  a  UID for  the  new thing  and then 
provide  a  definition  for  the  new thing.  The  new things  shall  be 
created as  extensions  of  the  Dictionary.  How that  is  done in  the 
formalized language is described for individual things in par. 8.1.1. 
and for kinds of things in par. 9.

5.2 Coding systems and namespaces
There  are  many  organizations  and  standards  in  the  world  that 
manage classification systems or coding systems in order to allocate 
unique identifiers or codes to widely known concepts and individual 
things. If the concepts that are denoted by such identifiers are not 
(yet) part of the Gellish language, then those identifiers can be used 
in Gellish by adding a prefix followed by a colon (:) to the idetifier 
of the organization. For example, the ISO 3166-1 standard numeric 
code for countries allocates numeric codes to all  countries in the 
world. For example, the number 840 is allocated to the USA. Thus, 
the USA can be identified in Gellish e.g. by the identifier ISO1366-
1:840. 

However, countries, such as the USA, are already included in the 
Gellish dictionary. The USA has UID 2700347. The use of both as 
UIDs would mean that the two identifiers would not be recognized 
as the same country. In order to harmonize that, such third party uids 
can  be  included  in  Gellish  formalized  languages  by  treating  the 
codes as synonym codes (‘names’) for things that  may have also 
other names, whereas they are identified by their Gellish UID. The 
coding system is typically indicated as the language community in 
which the code find its home base. 

Thus users of the formalized language may include namespaces of 
other organizations and may define some or all of them as synonyms 
of  names  of  things  that  are  already  in  the  dictionary.  Such 
namespaces are specified in the same way as mapping tables, as was 
described in par. 5.1.4. 
For example, the alternative denotation of the USA by code 840 can 
be included in the Gellish dictionary as follows:
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Language 
community

UID of 
left hand 

object

Name of 
left hand 

object

Name of 
kind of 
relation

UID of 
right 
hand 
object

Name of right hand 
object

ISO 3166-1 2700347 840 is a code for 2700347 United States of America

Table 27, Example code in a coding system

Note that in  Table 27 the UID of the left hand and right hand are 
identical and identify the country within the formalized language. 
The ISO 3166-1 standard thus forms a ‘language community’ of its 
users  in  which  the  OID  codes  have  a  meaning  and  can  be 
interpreted.  Therefore  ‘ISO  3166-1’  is  used  as  the  language 
community

Furthermore, ISO 9834 standardized the joint ISO, IEC and ITU-T 
defined Object Identifier’s (OID’s) in principle for any concept in 
the world. Those OID’s are recorded in a repository http://www.oid-
info.com/index.htm that acts as a reference for concepts defined and 
managed by a hierarchy of ‘Registration Authorities’. For example, 
the United States of America has OID: 2.16.840. In Gellish Formal 
English the concept with UID 2700347 and name USA has already a 
code  name 840,  being  the  code  from ISO 3166-1,  as  mentioned 
above. But in addition to that this OID code can be added as another 
synonym. This is illustrated in Table 28.

Language 
community

UID of 
left hand 

object

Name of left 
hand object

Name of 
kind of 
relation

UID of 
right 
hand 
object

Name of right hand 
object

ISO 9843 2700347 OID:2.16.840 is a code for 2700347
United States of 

America6

Table 28, Coding system synonyms 

6 Specifying the OID 2.16.840 as a  (synonym) code for  UID 2700347 
ensures that in Gellish both refer to the same thing. Allowing both codes as 
identifiers (UIDs) in Gellish is not acceptable, because it would require a 
separate  equivalence  relation,  whereas  the  possible  presence  of 
equivalence relations has the drawback that it is continuously required to 
search for  possible  equivalences.  On the  other  hand Gellish  allows for 
adding non-mapped things in a free number range above 1.000.000.000.
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The  ISO 9834  standard  thus  created  a  ‘language  community’  in 
which  the  OID  codes  have  a  meaning  and  can  be  interpreted. 
Therefore ‘ISO 9834’ should be used as the language community for 
OID’s.

An alternative way, although not recommended, is to use the foreign 
code with a prefix as UID in Gellish and define that they denote the 
same object as follows:

Language 
community

UID of left 
hand object

Name of 
left hand 

object

Name of 
kind of 
relation

UID of 
right 
hand 
object

Name of right hand 
object

ISO 9843 OID:2.16.840 USA is the same as 2700347 United States of America

A  consequence  of  this  alternative  is  that  software  should  be 
programmed such that these are two nodes that the semantic network 
which relations should be superposed.

An example  of  an ISO standard for  coding systems for  kinds  of 
things is ISO 81346. Its part 2 defines the general code structure for 
individual  things  and ISO 81346-10 contains  names  for  kinds  of 
things and their  codes in Power Plants  and ISO 81346-12 (draft) 
contains  names  for  kinds  of  functions  (processes)  and  physical 
objects  and  their  codes  in  Buildings  and  Building  Services.  For 
example, the concept sewerage system has code TT.

The process to relate other identifiers and codes to Formal English 
concepts is similar as for individual things.

Note  that  identifiers  from  coding  systems  may  also  be  used  as 
Gellish  UIDs  without  being  declared  identical  things  to  existing 
Gellish UIDs. For a proper functioning of Gellish based systems it is 
then  important  that  those  external  concepts  are  arranged  in  the 
taxonomy of Gellish concepts. Therefore they should be defined as 
being subtypes of existing Gellish concepts. Thus the definition of 
such  concepts  should  obey  the  same  rules  as  are  applicable  for 
defining  new  concepts  in  Gellish  and  its  taxonomic  dictionary. 
Those rules are further discussed in Ref. 2.
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5.3 Homonyms
A homonym is a name that is used in different contexts to denote 
different concepts (represented by different UIDs). Homonyms can 
be allowed in a formalized language, provided that the allocation of 
a  name to a  concept  is  always defined in a  language community 
within  a  language such that  it  makes  the  combination (language, 
language  community,  name)  a  unique  and  unambiguous 
identification  of  the  concept.  For  example,  in  English  the  term 
building denotes multiple concepts. Expression Table 29 shows that 
(in English) the combination of a language community and a name 
enable to distinguish a building activity from a building construction 
that is the result of a building activity.

Language 
community

UID of 
left hand 

object

Name of
left hand 
object

Name of
kind of relation

Name of 
right hand 
object

activity 194173 building is a specialization of forming
building 
engineering

40018 building is a specialization of construction

Table 29, Example of a homonym

5.4 Addresses
An address is a name or denotation of an area that acts as a location 
where  a  physical  object  may  reside.  There  are  various  kinds  of 
addresses, such as home address, postal address, telephone address, 
e-mail  address,  etc.  This  definition  of  an  address  shows  that 
allocating an address to a physical object should be done by relating 
a physical  object  to an area where the physical  object  is  located, 
whereas  the  address  is  the  name  of  that  area.  For  example,  the 
allocation of an address may be expressed as a relation between a 
house  and  an  area  on  which  the  house  is  built,  or  the  relation 
between a person and an area where he resides officially.
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Figure 26, Addresses

Home addresses (visit addresses) are usually allocated and registered 
officially by a government agency. They determine the boundaries 
of a parcel and allocate a registration number as well as an address.  
For example,  in The Netherlands,  the Kadaster  is  the registration 
authority  that  allocates  the  ‘Kadastrale’  registration  number  to  a 
parcel; whereas the local government adds a street name and parcel 
number within the street. These authorities should ensure that those 
numbers  and  names  are  unique  within  the  context  of  the  local 
community (which behaves as some kind of language community).

Home  addresses  are  often  decomposed  as  text  and  then  form  a 
concatenated code, but in a semantic model, the area shall be related 
to stepwise larger areas, each with its own UID and denotation. For 
example, I live on a place (a parcel) which I can give a UID 101. 
Assume that the place has registration number 123.456 and is locally 
in the street denoted by a number, such as ‘1’. The parcel is located 
within  a  larger  postal  area,  called  ‘2724  VR’.  Now  the  parcel 
registration number and zip code are related as is given in Table 30.

Language 
community for left 
hand object name

UID
Name of
left hand 

object

Name of
kind of relation

UID
Name of 
right hand 
object

Kadaster 101 123.456 is classified as a 731.018 parcel
Zoetermeer 
government

101 1 is an alias for 101 123.456

Zoetermeer 
government

101 1 is a part of 102 2724 VR

Table 30, Parcel registration number and zip code 
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Note that the UID is a unique identifier for the area within Formal 
English, but the number 1 is only unique within the context of the 
postal area.

The  parcel  is  also  located  in  a  street  in  Zoetermeer  in  The 
Netherlands. That can be specified as in Table 31.

Language 
community for 
left hand object 
name

UID
Name of
left hand 
object

Name of
kind of 
relation

UID
Name of 
right hand 
object

Zoetermeer 
government

101 1 is a part of 103 Violiervaart

Zoetermeer 
government

103 Violiervaart is a part of 104 Zoetermeer

geography 104 Zoetermeer is a part of 270021 The Netherlands

Table 31, Geographically composed address

The  above  examples  illustrate  how  addresses  can  be  modeled 
semantically.  The language communities  illustrate  that  for  coding 
systems the base language community is typically the organization 
that is responsible for allocating the codes. 

5.5 Denotation by code and classification
Sometimes things are not denoted by a name, but they are given a 
code or number, which is allocated by an authority that determines 
the  context  for  interpretation.  Such  an  authority  is  the  core  of  a 
language  community  that  makes  use  of  the  code.  Within  that 
language community such a code, usually in combination with the 
classification of the thing, it is unambiguously defined which object 
is meant. 
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Figure 27, Denotation by classification and code in context

In tabular form this is expressed as follows:

Language 
community

UID of 
left 

hand 
object

Name of 
left hand 

object

Name of kind of 
relation

UID of 
right 
hand 
object

Name of 
right hand 

object

Amsterdam 
government

102 25.3 is classified as a 45394 traffic light

For example, in many modern cities traffic lights and lamp posts are 
coded, often by a number, such as 25.3, being the third traffic light 
on  road  crossing  25  in  Amsterdam.  This  example  illustrates  that 
there are two additional pieces of information required in order to 
interpret  the  code  25.3:  firstly  ‘Amsterdam  government’  is  the 
language community context for the name, because this particular 
code  is  allocated  by  the  Amsterdam  government  and  secondly 
‘traffic  light’  is  the kind that  classifies  the individual  thing.  (We 
ignore the fact that the code itself is a concatenation of two codes). 

5.6 Nameless things
Sometimes, things have no name, nor a code. They have an identity 
and are represented by a UID, but they are nameless. However they 
may be indirectly denoted by their relation(s) to other things. For 
example, they may be denoted by their classification and/or by the 
name of a kind of role which they play and possibly by the name of 
the assembly from which they are a component. 
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Figure 28, Denotation by classification and composition

Figure 28 illustrates and example of a nameless object identified by 
its UID as ‘103’. From its classification relation with a kind of thing 
and a composition relation with its higher assembly we can interpret 
that it is the driven end bearing of P-1201. Thus it is an individual 
thing that is classified as a bearing, which is located at the driven 
end (the end of the shaft at the side where a motor drives P-1201) 
and that is a part of P-1201. In tabular form this can be presented as:

Intention UID Name of 
left hand 
object

Name of
kind of 
relation

UID Name of 
right hand 
object

statement 103 Nameless is classified as a 130345 driven end 
bearing

statement 103 Nameless is a part of 104 P-1201
statement 104 P-1201 is classified as a 130206 pump

From the third line it can be interpreted that P-1201 is the tag name 
of a pump. We may also interpret that the combination of words 
‘driven  end  bearing’  is  a  name  of  a  kind  of  role  for  a  bearing, 
because  that  concept  is  defined  as  such  in  the  dictionary  and  is 
widely  used  in  the  rotating  equipment  engineering  language 
community to classify a bearing in such a position.

Thus, anything needs a unique identifier (UID), but not necessarily a 
name, code, etc.  In order to know that something is nameless on 
purpose, it is a recommended convention for Formalized English to 
give nameless things the name ‘Nameless’.
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5.7 Identification on the Internet
On  Internet  things  are  typically  denoted  by  Uniform  Resource 
Identifiers  (URIs)  as  by  Uniform  Resource  Names  (URNs)  as 
described in  
http://en.wikipedia.org/wiki/Uniform_resource_identifier. A URN is 
a concatenation of three components: the string ‘urn:’, an explicitly 
specified namespace that is followed by a colon (:), followed by a 
‘character string’ that acts as an identifier. The namespace ‘Gellish’ 
is  explicitly  specified  as  http://www.formalenglish.net/dictionary. 
The  concept  water  has  a  Gellish  UID  of  430266.  Thus  in  the 
namespace ‘Gellish’ the concept water is unambiguously referenced 
on the Internet as:

urn:Gellish:430266

When URIs are preferred (as with RDF) this should be replaced by:

http://www.formalenglish.net/dictionary#430266. 

Homonyms are  distinguished from each other  in  Gellish by their 
language community. Therefore the name for denoting a concept in 
an  unambiguous  way  needs  to  be  preceded  by  a  language 
community that denotes a domain dictionary, such as ‘materials’ in 
the case of water. Thus references to the concept 430266 by one of 
its names in English becomes:

urn:Gellish:materials:water

http://www.formalenglish.net/dictionary/materials#water

And as a second example, the United States of America is 
unambiguously referenced on the Internet as:

urn:Gellish:2700347

5.8 Descriptions and textual definitions 
Terms,  such  as  names,  codes,  abbreviations  and  descriptions  or 
textual  definitions  are  unique  by  their  unique  combination  of 
characters and therefore they are not given separate UIDs in Gellish. 
UIDs are only required to represent the things that are  denoted by 
the terms.
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Definitions may be expressed in a computer interpretable form as 
‘definition models’. A definition model of a concept is a network of 
relations  between the  concept  and other  concepts,  each of  which 
relation is by definition the case, and each of which related concept 
is defined as well. Definition models are further discussed in par. 
10.1.

5.9 Textual and graphical information and 
documents

Text, other than terms (names) and textual definitions, can either be 
fully incorporated within a semantic model as a textual object, or it 
can be expressed in an external document on a carrier, such as a 
paper  document  or  an  electronic  file,  which  can  be  linked  to  a 
semantic  model.  Before  we  explain  how  these  two  options  are 
modeled,  we  need  to  clarify  the  relation  between  text,  graphics, 
information and documents.

5.9.1 Information versus documents
Physical documents (e.g. on paper) and electronic files are both real 
physical  objects.  The  ink  and bits  are  also  physical  objects.  The 
content of physical documents and files however (not the physical 
ink or bits, but the informative aspect), which is interpreted from the 
shapes  and  patterns,  is  ‘information’.  Such  information  can  be 
expressed as text or spoken expressions in natural language or it can 
be  expressed  (modeled)  in  a  formalized  language,  such  as 
formalized English.

Qualitative information

The  term  ‘document’  is  ambiguous.  In  some  contexts  the  term 
document denotes a physical copy, for example in the form of ink on 
paper. But more often the term document is used to denote a piece of 
information,  which  may  be  a  single  content  that  is  common  to 
multiple physical copies. To eliminate the ambiguity we will use the 
term document then we denote a piece of information, which may 
qualify  the  content  of  multiple  physical  documents.  For  physical 
manifestations we will use the term physical document, file or web 
page.
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Thus,  a  particular  content  (a  piece  of  information,  such  as 
Requirement-5) can be expressed in multiple physical copies and it 
may be present even in multiple different formats. For example, the 
same piece of information can be expressed on paper as well as in a 
Word file (doc format),  as well  as in pdf format files on various 
locations. Thus with ‘a piece of information’, such as ‘Requirement 
5’, we do not mean one individual (physical) text, but the common 
content  that  is  contained  in  and  is  interpreted  from  each  of  the 
possibly multiple copies of some text. The individual content of each 
of the physical copies is qualified by that same common qualitative 
content.  Therefore,  that  common  ‘same’  content  is  called 
‘qualitative information’. In fact it classifies the content of multiple 
copies  and  therefore  it  appears  to  be  a  (qualitative)  kind  of 
information.  That  is  the  reason  why  it  can  be  stated  that 
Requirement 5 <is a qualitative (subtype of)> requirement (whereas, 
according to the taxonomic dictionary, a requirement is defined as a 
subtype of information).

When a piece of information incorporated in a semantic model, then 
the  complete  text  can  be  treated  as  an  object  in  its  own  right, 
whereas  that  text  remains  in  natural  language  and  thus  is  not 
expressed in Formal English This implies that the text shall have its 
own UID and may have a name or remain nameless. 

Figure 29, A textual requirement as an object 
in a semantic model

For example, as illustrated in Figure 29, a paragraph in a standards 
document may contain requirements about compressors. Each such 
requirement is a piece of information (qualitative information) that 
should  be  given  a  UID  and  might  have  a  name,  such  as 
‘Requirement  5’.  That  particular  Requirement-5  then  has  to  be 
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defined as being a ‘requirement’. The definition of Requirement-5 is 
then expressed as follows:

Requirement-5 is a qualitative requirement

The  content  of  such  a  paragraph  (the  actual  text)  defines  the 
requirement. Therefore that text is specified as the definition of the 
requirement. That textual definition is related to the UID of the piece 
of information with name Requirement-5 as follows: 

Requirement-5 is defined as A compressor shall ...

The paragraph can then be related to  the concept  about  which it 
provides information by stating for example

 Requirement-5 is a requirement for a compressor

The content  (the  textual  definition)  of  a  paragraph as  well  as  its 
definition as being a qualitative requirement can be recorded in an 
Expression table (see chapter 15) on the same line. For that purpose 
that standard table has a separate column, called ‘Description’.

UID 
of 

LHO

Name of left 
hand object

UID of 
idea

Name of kind of 
relation

UID of
RHO

Name of 
right hand 

object
Description

101
Requirement 
5

1726 is a qualitative 970007 requirement
A 
compressor 
shall ...

101
Requirement 
5

5398
is a requirement 

for a
130069 compressor

Table 32, Piece of information as an object in a semantic model

Thus  the  example  model  of  Figure  29 can  be  expressed  as  is 
illustrates in Table 32.

External documents

Information that is expressed in an external document is typically 
available in one or  more electronic files  (copies)  in one or more 
different  formats.  For  example,  the  same  information  can  be 
available  in  a  Word document  (doc-file),  as  well  as  in  a  pdf-file 
format.  In  such  a  case  the  content  (text)  is  not  provided  in  the 
semantic model itself, but the file is incorporated as an object in the 
semantic  model  and  the  requirement  is  related  to  that  file. 
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Furthermore,  the  location  of  the  file  (the  path  to  the  file  in  a 
directory) and the format of the file may be included in the model. 
The  model  may  also  include  a  specification  that  allows  for  the 
launching of suitable application software to retrieve and display the 
content of the file. For example, the above ‘Requirement 5’ text may 
be  stored  in  two  files  as  ‘Requirement_5.doc’  and  as 
‘Requirement_5.pdf’. Then the relation between UID 101 and the 
two files can be as illustrated in Table 33

UID 
of 

LHO

Name of left hand 
object

Name of kind of 
relation

UID of
RHO

Name of right hand 
object

Descrip
tion

101 Requirement 5 is presented in 102 Requirement_5.doc
101 Requirement 5 is presented in 103 Requirement_5.pdf
102 Requirement_5.doc is an element of 104 C:\my documents
103 Requirement_5.pdf is an element of 105 www.examples.com
104 C:\my documents is classified as a 492017 directory
105 www.examples.com is classified as a 970274 url address

Table 33, Information in referred external files

This can be interpreted as a definition of a hyperlink, so that the file 
extensions  (doc  or  pdf,  etc.)  may  be  sufficient  for  application 
software to determine which software should be launched to retrieve 
the file and to display its content when a user activates the hyperlink.
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Figure 30 presents the example for a reference to two external files 
that contain different physical expressions of the same qualitative 
information.

Figure 30, Text stored in external document

Note  that  the  (qualitative)  information  is  presented  in  (or  <is 
presented on>) the file, whereas the file is an element in a collection 
of files, being either a directory in a file management system, or an 
internet address of a ‘page’ on the Internet.

In the above example, the requirement is applicable for compressors 
in  general.  Other  requirements  are  applicable  only  to  specific 
individual  things.  For  example,  a  (textual)  requirement  may  be 
applicable  for  compressor  C-351.  For  the  specification of  such a 
requirement  (slightly)  different  kind  of  relation  is  required  as  is 
shown in Figure 31.

Figure 31, Pattern for textual requirements
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5.9.2 Information about physical objects
The fact  that  particular  information  is about  a physical  object  is 
typically  modeled  as  a  relation  between  some  ‘qualitative 
information’ and the physical object. 

For  example,  A  P&ID about  process  unit  1400  with  drawing  nr 
T-123.456 contains information about P-1401. This is modeled as 
follows:

T-123.456 contains information about P-1401
T-123.456 is defined as a P&ID

Note that in this example T-123.456 is not an individual copy, but is 
the ‘qualitative information’ that  is  common to all  copies of  that 
drawing. The kind of relation <is defined as a> is a synonym of <is a 
qualitative>

5.9.3 Location of information in files
The  relation  between  a  particular  piece  of  information  and  an 
individual  physical  file  at  a  particular  location  on  the  internet  is 
modeled as follows:

T-123.456 is presented on Unit-1400.dwg
Unit-1400.dwg is an element http:/www.gellish.net/examples 
Unit-1400.dwg is classified as a electronic data file
T-123.456 is presented on Unit-1400.pdf
Unit-1400.pdf is classified as a electronic data file 
Unit-1400.pdf is an element of http:/www.gellish.net/examples 

Table 34, Location of information in a file in a directory

This  example  illustrates  that  both  files  are  stored  at  the  same 
location on the internet.
In a similar way a figure or picture is presented on a document file. 
For example:

Picture-1 is presented on/in Report-1.doc

This latter example illustrates that there does not need to be a 1:1 
relation between a piece of information and a physical file.

A physical  electronic  document  is  usually  a  blob (a  binary large 
object) that is a ‘black box’ for the model. In other words the content 
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of a document is  not interpreted by according to the rules of the 
modeling language, unless the document content happens to be in 
the  form  of  a  computer  interpretable  language.  For  example,  a 
picture (png-file), a pdf-file, a Word document (doc-file) or an Excel 
spreadsheet (xls-file) is intended to be displayed by an application 
but (semantically) interpreted only by human beings. Such files are 
included in the model by a reference to the blob, as described above.

However,  there  are  exceptions.  One  exception  is  when  the  file 
contains  an information model  that  is  computer  interpretable.  An 
example  of  an  interpretable  information  model  is  an  information 
model in the form of an Expression table in Excel. Such a document 
is  an  xls-file  with  a  spreadsheet  that  has  a  predefined  tabular 
structure with content that complies with the rules of Gellish Formal 
English and therefore it can be interpreted by application software. 
The content of such a file can be part of the information model in 
which the file as a whole is a blob.   

5.9.4 Dynamic standard forms & data sheets
Empty  data  sheets  are  a  kind  of  standard  forms.  Just  as  other 
standard forms they consist of predefined text and empty fields in a 
particular lay-out. Such empty standard forms can be re-used and 
then filled with data, either for display only or the filled-in form can 
be treated as a new document. 

Sometimes a standard form (or data sheet) is created in spreadsheet 
form, such as in Excel (as an xls-file). That means that a particular 
field  on  a  sheet  in  a  file  is  reserved for  a  particular  value.  This 
enables to create ‘dynamic’ standard forms and data sheets, where 
the empty or partially filled in form is static, whereas other fields are 
dynamically  filled  by  application  software  with  data  from  the 
information model. The static fields are part of the blob that is not 
part  of  the information model.  The fields that  are intended to be 
dynamically filled are related to the information model by relating 
the  field  to  one  of  the  related  objects  in  an  expression  in  the 
information model that ‘contains’ the value that need to be filled-in.
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6 Categories of kinds of relations

The  concept  ‘relation’  or  ‘relationship’  (2850)  is  the  top  of  the 
taxonomy  hierarchy  of  a  large  number  of  standardized  kinds  of 
relations. The hierarchy of kinds of relations has the structure of a 
hierarchical network and does not have a pure tree structure, because 
some kinds of relations have more than one supertype. Nevertheless, 
the  explanation  below  typically  follows  the  branches  of  a  tree 
structure.

Formal English intents to enable to make expression about anything. 
This means that the language should provide kinds of relations for 
expressions about 

o individual things

o kinds of things

o collections of individual things

o collections of kinds of things

This is illustrated in Figure 32.

Figure 32, Relations between anything

The related things are ordered in a taxonomy structure (a subtype-
supertype hierarchy) and the kinds of relations are also arranged in a 
taxonomy structure.  Figure  33 illustrates  the  top  structure  of  the 
taxonomy of kinds of relations.
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Figure 33, Main categories of kinds of relations

Each kind of relation can be used to classify relations of such kinds. 
Kinds  of  relations  are  typically  denoted  in  Formal  English  by 
standard  phrases  and  inverse  phrases.  Those  phrases  and  inverse 
phrases have a reading direction that determines the role of the left 
hand  and  right  hand  object  in  an  expression.  The  top  structure 
defines the following categories of kinds of relations. 

o Naming and identification relations

These are relations that are suitable for being used to identify 
and name anything (individual things as well as kinds of things) 
by relating it to a name or identifier.

o Relations between individual things 
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These are relations that for the expression of information about 
real as well as imaginary individual things. 

The phrases that denote these kinds of relations typically begin 
with <is...> or with <has...> and do not end with <...a>.  For 
example: <is a part of> or <has as part>.

Within this category of relations we distinguish between:

o Relations between single individual things

o Relations  between a  single  individual  thing  and a  collection  of 
individual things

o Relations between collections of individual things

o Relations between individual things and kinds of things.

These are relations for the classification of individual things.

The phrases that denote these kinds of relations typically begin 
with <is...> and end with <...a>. For example: <is classified as 
a>.

o Relations between kinds of things.

These  are  relations  for  the  expression  of  knowledge, 
requirements and definitions of things of particular kinds.

This category has two subcategories:

o Hierarchical relations between kinds of things

These  are  relations  that  are  not  self  referential,  i.e.  the 
concepts can be used for forming hierarchical networks of 
relations  without  recursion.  This  means  that  in  such  a 
hierarchy a related concept has as constraint that it may not 
appear more than once in a chain of related concepts.

The phrases that denote these kinds of relations typically 
begin with <is  a...> and do not  end with <...a>,  because 
they  state  that  something  is  by  definition  the  case  for  a 
kind.  For  example:  <is  a  kind  of>,  which  means  <is  by 
definition a subtype of>.

o Conceptual relations between individual things of specified kinds
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These are relations that specify things that can be or are the 
case for categories of individual things. They do not have 
the  non-recursivity  constraint.  Thus  the  related  concepts 
may appear more than once in a chain of concepts that uses 
a conceptual relation. They specify possibilities in general, 
requirements in specific contexts or what is by definition 
the case for all things of the specified kinds.

The phrases that denote these kinds of relations typically 
begin with 

o <can be...> or <can have...>, 

o <shall be...> or <shall have...> or 

o <is by definition...> or <has by definition...>.

Within this category of relations we distinguish between:

o Relations between single kinds of things

o Relations between a single kind of thing and a collection of kinds 
of things

o Relations between collections of kinds of things

Note that for sake of clarity of this document sometimes there are 
some details not show in the hierarchies and figures. For example 
some kinds of relations have multiple supertypes whereas only one 
supertype  is  shown  and  there  are  some  intermediate  concepts 
defined in the upper ontology that are not show.

Each of the above categories is further described in the following 
chapters.
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7 Relations between individual things

Individual things are not only real or imaginary physical objects, but 
also  aspects  of  physical  objects,  such  as  properties,  qualities, 
abilities, etc. as well as individual relations, activities, processes, etc. 
Thus an individual thing can be anything that is distinguished from 
something else and that  is  not  a  classifier  for  multiple individual 
things.

Figure 34, Kinds of relations for relations between 
individual things

Figure 34 illustrates the main kinds of relations in the top of the 
taxonomy of kinds of relations that are intended for the classification 
of relations between individual things. Relations between individual 
things  can be  binary  relations or  variable  order or  higher  order 
relations. 

Binary relations 

There are many kinds of binary relations between individual things. 
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Figure 35, Relations between individual things

The right hand side of Figure 35 presents for example: 

o Composition relation (1260)  between two physical  objects.  The 
composition relation and its subtypes are further discussed in par. 7.1.

o Connection  relation  (1487)  between  two  physical  objects. 
Connections  can  be  rather  complicated  as  various  kinds  of 
connections are possible, including also various kinds of connection 
materials. Those subjects are discussed in par. 7.2.

o Possession of aspect relation (4679) between a physical object and 
an aspect that is possessed by that physical object (aspects that are 
possessed),  such  as  its  temperature,  color,  skill,  etc.  That  kind  of 
relation has various subtypes as is discussed in par. 7.4. 
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o Experience of aspect relations (5058) between a physical object 
and  an  aspect  of  another  physical  object  (aspects  that  are 
experienced), such as a sensor that senses a temperature of another 
object.

o Objectives  relations  (5115)  between  a  relation  or  state  and  a 
purpose or objective, such as the reason why an activity exists.

o Involvement relations (4961) between a variable order or higher 
order relation and an individual thing that plays a role (is involved) in 
that higher order relation, such as person who is a performer of an 
activity. The involvement relation (4767) has a number of subtypes 
which express the kind of role in which something is involved. Those 
subtypes are discussed in par. 7.5.1.

Each of the two things that are related by a binary relation plays a 
role of a particular kind. 

The kind of relation that is to be used for classification of a 
binary  relation  can  usually  be  found  by  searching  for  the 
combination of the term <is> or <has> and the name of the 
role that one of the related things is playing.

For  example,  searching  for  a  phrase  that  denotes  a  composition 
relation between two physical objects can be done in various ways. 
For example, using the Gellish Search Engine [Ref. 3] for searching 
on the combination of ‘beginning with <is> and including <part>’ 
will deliver various kinds of relations in which one thing plays a role 
of part. Among them is the relation denoted by the phrase <is a part  
of>  (1260).  However,  the  combination  of  <has> and <part>  will 
point to the same relation, via the phrase <has as part> (1260). But it 
is also possible to find that relation by searching via the role of the 
other role player. Thus the combination of <is> and <whole> will 
point to the phrase <is a whole for>, which is an alternative phrase 
for (1260).

Higher order relations 

States of  affairs  are typically defined by a collection of coherent 
aspects that have a particular value at a particular moment in time 
and that may be correlated and dependent on each other. Such states 
can be static over time or they can be dynamic, thus changing over 
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time,  such  as  occurrences,  activities  and  processes.  Static  states, 
dynamic  states,  physical  and  mathematical  correlations  relate 
multiple aspects that are possessed by one or more things. Such a 
relation is therefore called a higher order relation. 

Higher order relations between individual  things are expressed in 
Expression  tables  as  a  collection  of  elementary  involvement 
relations  (as  described  above).  This  enables  that  the  number  of 
involved  things  is  flexible  and  may  even  vary  over  time.  For 
example, the participants in an activity or process may vary over 
time, whereas the participation of each participant in the process is 
recorded as a separate involvement relation between that participant 
and the process.

Constraints on recursivity and incompatible roles

A  self  referential  relation  (also  called  a  recursive  relation)  is  a 
relation that relates something to itself. Typically relations between 
individual things are not recursive, because usually individual things 
are not related to themselves. For example, a temporal sequence of 
occurrences  (<occurs  after>,  1388)  relation  relates  an  individual 
occurrence to another individual occurrence. For example, given that 
A-1 and A-2 are individual activities we can specify:

A-1 occurs after A-2

However, when A-1 and A-2 would be the same activity, then the 
statement would be incorrect, as something cannot occur after itself. 

A constraint that the player of a role of some kind may not also play 
a role of another kind is expressed as a constraining relation between 
the kinds of roles. The general definition of a self referential kind of 
relation  and  a  constraint  on  its  role  players  is  illustrated  by  the 
example in Figure 36.
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 Figure 36, Constraint on role players

The definition of <occurs after> specifies that a relation of this kind 
requires a first role as a temporal predecessor and a second role as a 
temporal successor. Each of those roles is by definition played by an 
individual  thing,  under  the  constraint  that  those  individual  things 
must be classified by the concept ‘occurrence’ or one of its subtypes, 
and as additional constraint that the two individual occurrences may 
not be the same. The latter constraint is a constraint on the allowed 
players of the roles of the specified kinds. This constraint can be 
modeled explicitly by using a kind of relation that expresses that an 
individual thing that plays a role as ‘temporal predecessor’ cannot 
simultaneously  play  a  role  as  ‘temporal  successor’  in  the  same 
relation  (which  is  by  definition  the  <occurs  after>  relation). 
Formally this is expressed as:

temporal 
predecessor

cannot be played by the player of
temporal 
successor

Similar constraints on role players can be expressed in general as:

kind of role cannot be played by the player of kind of role

7.1 Composition relations
In general individual things are composed of components or parts. 
This  holds  e.g.  for  physical  objects  and  fluids,  systems,  spaces, 
routes  as  well  as  for  organizations,  occurrences,  aspects  such  as 
distances and time, networks, etc. This is opposed to elements that 
are combined in a collection. The elements in a collection do not 
have roles of different kinds in the collection, apart from possibly 
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being arranged in a list sequence. There are various ways in which 
things can be (de)composed.

Figure 37 illustrates the various subtypes of composition relations 
that enable the expression of various different ways in which wholes 
can be decomposed.

Figure 37, Composition relations

The various kinds of composition relations correlate with the various 
ways in which components are related to each other. The kinds of 
relations can express:

o A component is assembled in an assembly (1190). This implies 
that multiple components are connected, bound or welded together. 

o Something is a physical feature of another thing (1492). A physical 
feature  is  an  integral  part  of  something,  whereas  it  can  be 
distinguished as a separate item, although the boundary between the 

140



feature  and the  whole  may not  be  well  defined.  An example  of  a 
physical feature is a rim or a lifting lug.

o A  physical  document  is  an  amendment  of  another  document 
(4742).

o A route is a part of a network (1787).

o A course is a part of a route (1439)

o A person or organization is a member of an organization (5537).

o A  individual  thing  is  component  in  a  composed  whole  (4661) 
whereas  the  component  is  arranged  in  a  pattern  in  a  particular 
position.  For  example,  an  arrangement  of  components  that  are 
connected  in  a  sequence,  such  as  in  a  chain.  The  first  and  last 
component in a chain have a special position, which can be specified 
using the following subtypes:

o An individual thing is arranged in a first position in a sequence of 
components in  a composed whole (6069).

o An individual thing is arranged in a last position in a sequence of 
components in  a composed whole (6070).

There are separate kinds of relations for specifying relations between 
pairs of components in an arrangement, such as the arrangement of 
items in a sequence (see par. 7.10). 

7.1.1 Extents, concentrations and recipes
A component or portion is always a fraction of the whole of which it 
is a part. A composition relation only indicates that the component is 
a  part,  but  does  not  specify  to  what  extent  that  is  the  case.  For 
example, it might be the stated that a fluid consists of x %wt of a  
particular  component,  thus  specifying  the  concentration  of  the 
component in the fluid. In fact this expression uses a more precise 
composition relation,  expressing that  the fluid consists  of  (has as 
part) a component that comprises x % of the mass of the whole fluid. 
In other words it is an ‘x % part-whole relation’. This meaning can 
be  expressed  accurately  by  classifying  the  relation  twice:  first 
classifying it as a composition relation and secondly classifying its 
extent  by  a  fraction  or  percentage  on  a  scale.  For  example,  the 
concentration of salt in a sample of seawater can be expressed in this 
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way and also the mass of a component relative to the mass of whole 
item, as is illustrated in the following table.:

Left hand object
Relation 

type
Extent

Unit of 
measure

Right hand 
object

Batch of seawater has as part 3 wt% Batch of salt
my car has as part 10 wt% my engine

Thus the extent, possibly quantified on a scale indicated by a unit of 
measure, expresses the extent that a composition relation is the case.
Also classification relations can be only partially the case, especially 
for a classification by substance, e.g. when classifying materials of 
construction or ingredients in a mixture. Then it may be that in fact  
only a part of the whole is classified that way. For example, when a 
material is classified by substance as being water, then usually it is 
not 100% pure water. The purity can be specified by stating e.g. that 
it  is  classified as  98% water.  Furthermore,  the  impurities  can be 
expressed by specifying e.g. that the material is classified as 1% salt. 
The following table presents such expressions in Formal English.

Left hand object Relation type Extent
Unit of 
measur

e

Right hand 
object

Batch of seawater
is classified by 
substance as

98 wt% water

Batch of seawater
is classified by 
substance as

1 wt% salt

This  mechanism  can  be  used  to  specify  e.g.  recipes.  When  the 
components need to have separate identities, for example because 
there can be additional information about those components,  then 
the composition relations with specified extent should be used. If the 
components are pure substances or natural ingredients, then it may 
be  sufficient  only  specifying  a  number  of  classifications  by 
substance.
The value can also be an upper or lower limit value for an extent. In 
such  cases  a  subtype  of  the  kind  of  relation  should  be  used  to 
express whether the value should be interpreted as a lower limit or 
as an upper limit value. For example the usage of the subtype kinds 
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of relations <has with a minimum ratio as part> and <is classified by 
substance as at least> indicate that a specified extent is a lower limit 
value.

7.2 Connections
Connections between physical objects can be specified in a simple 
way by a binary relation as:

A <is connected to> B 

Figure 38, Connection relations

It may be expressed explicitly that physical objects are physically 
connected, but a connection may be logical, such as for example a 
funnel that is logically ‘connected’ to a drain, as it should be located 
under the drain, whereas the connected items may not be in physical 
contact.  Also in telecommunication there are connections without 
physical  contact.  Thus  connected  items  may  physically  be 
connected, but nevertheless they may not have a direct contact, such 
as when isolation material is used to avoid direct contact. On the 
other hand it may be required to explicitly express that two physical 
surfaces touch each other.

7.2.1 Connection assemblies
A specification  that  two physical  objects  are  connected  does  not 
specify  how those things are connected. How things are connected 
can  be 
very  complicated,  because  various  kinds  of  connection  materials 
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may be involved, such as fittings, flanges, gaskets, nuts and bolts or 
welds.  The  modeling  of  such  connections  typically  requires  the 
creation of a ‘connection assembly’. 

A  connection  assembly  is  an  assembly  (an  assembled  physical 
object) that has as parts the ends of the items that are connected, 
together with the connection material(s). By making the parts and 
ends  or  physical  features  of  the  components  explicit  it  becomes 
possible to specify details. For example, it can be specified which 
end is connected to which other end or which surface is touching 
which  other  surface.  The  parts,  ends  and  surfaces  must  then  be 
specified as  distinct  components  of  the connection assembly.  For 
example, two pipelines are connected by a flanged connection that 
uses a gasket and a bolt set. A typical example of a specification of 
the  details  of  such  a  connection  is  presented  in  the  following 
connection model:

Pipeline-1 is connected to Pipeline-2
Flange-1 is a part of Pipeline-1
Flange-2 is a part of Pipeline-2

Conn-1 is classified as a flanged connection
Flange-1 is a part of Conn-1
Gasket-1 is a part of Conn-1
Flange-2 is a part of Conn-1
Boltset-1 is a part of Conn-1

Surface-1 is a feature of Flange-1
Surface-G1 is a feature of Gasket-1
Surface-G2 is a feature of Gasket-1
Surface-1 is a feature of Flange-1

Surface-1 is touching Surface-G1
Surface-2 is touching Surface-G2

Note that each flange is specified to be a part of a pipeline as well as  
a part of the flanged connection. Furthermore, a flanged connection 
is defined in Formal English as a subtype of a connection assembly 
(and  not  as  a  subtype  of  a  connection  relation).  This  enables  to 
specify the parts of that assembly and features of those parts. Finally 
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that makes it possible to specify which surface is touching which 
other surface to make the real physical connection. Typically this 
decomposition is accompanied by a specification of the geometry of 
such a  connection,  which is  usually  presented as  a  drawing.  The 
specification of geometry is beyond the (current) scope of this book.

7.3 Routes through networks
Routes  and  paths  are  physical  branches  that  connect  physical 
terminals or nodes in a physical network. For example a road has a 
role as a branch that connects its begin or ‘source’ physical object 
with its termination or ‘destination’ physical object and a fluid may 
follow  a  route  through  a  network  in  which  piping  connects 
equipment.  Each  source  or  destination  or  intermediate  node  is  a 
physical object in its own right similar to a connection assembly. 
Examples  of  a  node  are  a  roundabout  or  a  power  distribution 
terminal.
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Figure 39, Relations between terminals, traffic and routes

 Figure  39 illustrates  the  kinds  of  relations  that  can  be  used  to 
specify the relation of a source and a destination physical object with 
a route, or part of a route. The figure also mentions a kind of relation 
to relate traffic to a route, by specifying that some object, such as a 
vehicle, follows a particular route from source to destination. Note 
that it may be required to define the retour route as a separate route.

Routes  can  be  composed  of  sections.  Each  section  behaves  as  a 
smaller route (see ‘composition of a route’).

7.4 Aspects of individual things
Physical objects have aspects, such as characteristics, qualities and 
properties. Most aspects are intrinsic to the object, such as its color, 
length,  temperature  or  material  of  construction.  Some aspects  are 
extrinsic, which means that the existence of the aspect depends on 
the existence of a relation with another physical object. For example, 
it may depend on a role in a relation with something else.

Individual  aspects  are  related  to  individual  physical  objects  by  a 
<possession  of  aspect>  relation,  which  is  usually  denoted  by  the 
phrase <has as aspect>.
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It should be noted that related objects are not aspects of objects. For 
example, many data models and systems define entities that have 
‘attributes’ which often appear to be independently existing other 
things. Examples of such things are locations, manufacturers, parts, 
etc.  Such  things  shall  be  related  to  the  physical  object  by  other 
relations  than  the  ‘possession  of  aspect’  relation  or  one  of  its 
subtypes. Thus attribute is not a synonym of aspect.

Figure 40, Possession of an aspect and its subtypes

Figure 40 shows that individual things can have individual aspects 
and are generally related by an expression, such as: 

Individual thing-1 has as aspect A-1

Depending  on  the  subtype  of  aspect  it  is  possible  to  use  a 
semantically  more  precise  specification  of  the  kind  of  relation. 
These kinds of  relations are subtypes of  the possession of  aspect 
relation (1727) and thus form a hierarchy of kinds of relations. 

The first subtype specifies that the individual object has a particular 
individual role. Such a role is an extrinsic aspect, which means that 
its existence is dependent on the existence of a relation with another 
object and it also means that the role is only possessed by the object 
during the time that it has the role. 

147



The  distinction  between  the  subtypes  of  characteristic,  being 
(physical)  properties and  qualities is  based  on  the  distinction 
between quantifiable properties and non-quantifiable qualities. For 
example,  properties,  such  as  diameter  and  temperature,  can  be 
quantified by a numeric value on a scale. For example, a property 
may be quantified as 30 mm or 37 degC. On the other hand, there 
are qualities, such as color, toxicity, flammability, being pregnant, 
etc. which are not (directly) quantifiable, but are qualified by values 
that are typically denoted by terms, such as red, green, toxic, non-
toxic, etc. or by a category code, such as an RGB-code. Nevertheless 
some  qualities  can  be  correlated  to  quantifiable  properties.  For 
example, color can be correlated to frequency of light, which is a 
(quantifiable)  property.  Furthermore,  properties  may  (also)  be 
qualified  by  values  that  are  denoted  by  terms  provide  a  (rough) 
indication  of  their  value.  For  example,  a  temperature  may  be 
qualified as hot or cold, without specifying the precise value. 

Note: in information science the qualitative values for qualities are 
often called ‘literals’, which usually means that users of systems are 
allowed  to  use  free  text  to  denote  them.  However,  they  are 
qualitative concepts that shall be (and are) defined in the dictionary 
of Formal English. Thus ‘free text’ is not allowed in a formalized 
language.

There are some relations for qualities for which in natural language 
dedicated terminology is used, which are also be adopted in Formal 
English.  This  holds  especially  for  relations  that  express  that 
something can have a particular kind of structure or that it can be 
made of a particular kind of substance, such as plastic, wood or steel 
(which is in fact is a statement that it can have a particular kind of 
atomic or subatomic structure).

The above described subtype kinds of  relations can be used in a 
model for example as follows:

Object-1 has as role Role-1
Object-1 has as property Temp-1
Object-1 has as quality Color-1
Object-1 has as shape Shape-1
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Object-1 has as aspect Material of construction-1
Act-1 has as property Duration-1

The  above  statements  only  specify  that  the  object  or  occurrence 
possesses  an  individual  aspect  with  a  certain  name,  but  not  the 
nature of the aspect nor its quality or size. The latter requires that 
each of the individual aspects need to be classified and qualified or 
quantified  on  a  scale  (as  is  discussed  in  par.  8.1 and  8.2 
respectively).

Instead  of  specifying  that  an  individual  object  possesses  an 
individual aspect,  it  is  also possible to use a short-cut relation to 
relate  an  individual  object  directly  to  a  qualitative  aspect  (which 
leaves the individual aspect implicit). For example, this can be done 
by stating that an individual object is cylindrical or that it is made of 
stainless steel. Such short-cut relations are further discussed in par. 
8.1.5. The advantage of explicit individual aspects is that there is a 
smaller  chance  of  ambiguity.  Explicit  individual  aspects  are 
explicitly classified, they allow for multiple individual aspects of the 
same  kind  and  they  enable  that  the  same  aspect  has  multiple 
qualification and quantifications in the course of time.

The latest example in the above table (about Act-1) illustrates that 
not only physical objects can have aspects, but also occurrences can 
have some aspects.  In the example, the activity has a duration (a 
time  aspect).  An  occurrence  can  also  have  a  location  in  time, 
possibly indicated by a date of begin or end.

Note  that  it  is  a  common  mistake  to  erroneously  state  that 
occurrences have aspects, whereas in fact objects that are involved 
in the occurrences possess those aspects.

Furthermore, note that aspects cannot possess aspects. When aspects 
are related, then they are related by a correlation between aspects, 
which is a different kind of relation. For example, the temperature 
that marks the end of a temperature range is correlated to the range 
by an ‘end of range’ correlation. Similarly a color does not possess a 
frequency  of  light,  but  a  color  and  a  frequency  of  light  may  be 
correlated. Correlations are discussed in par. .
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7.5 Occurrences and states
States are situations that last for some time. There are static states 
and  dynamic  states.  In  static  states  nothing  changes  from  some 
macroscopic perspective, whereas dynamic states are states in which 
a change takes place. Therefore the latter are called occurrences or 
happenings. 

Occurrences include human activities, business processes as well as 
physical  and chemical processes,  and events.  Events are typically 
short during processes. Sometimes the duration of an event is very 
small and can be neglected, but by nature something cannot happen 
within  a  duration  of  zero.  Nevertheless  the  period  of  occurrence 
(duration) of an event can sometimes be denoted by a single value, 
pointing to a duration within a second or part of a second. 

7.5.1 Objects involved in occurrences
An  occurrence,  such  as  an  activity,  a  process,  an  event  or  a 
happening, is a state that changes a pre-state situation into a post-
state situation, whereas the change implies an interaction of involved 
things within the duration of the (dynamic) state. 

Figure 41, Subtypes of occurrence and involved things

Figure 41 illustrates some subtypes of occurrence, whereas there are 
numerous  further  subtypes  of  occurrence.  Those  subtypes  are 
usually denoted by verbs in various forms, which all  refer to the 
same kind of occurrence. For example, the terms acting, act, to act 
and  action  all  denote  the  same  concept.  The  ‘activities’  domain 
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Taxonomic  dictionary  provides  a  large  taxonomy  of  kinds  of 
occurrences.

Occurrences involve individual things, especially individual physical 
objects.  Each involvement of an individual thing in an individual 
occurrence in  a  role  of  some kind can be expressed by a  binary 
involvement relation, which is denoted by the phrase <involves> or 
its inverse phrase <is involved in>. For expressing the difference in 
roles that can be played by the involved things it is required that the 
involvement relation is specialized by defining a number of subtype 
kinds of relations. 

Figure 42 illustrates a large number of standard subtypes according 
to roles that can be played by involved things.

Figure 42, Subtypes of the involvement relation

Figure 42 also shows the ‘involved’ and ‘involver’  roles that  are 
played  by  definition  in  such  a  relation.  Each  subtype  of  the 
involvement relation requires by definition a role of a particular kind 
that  is  played  by  the  involved  thing.  Those  kinds  of  roles  are 
subtypes of the ‘involved’ kind of role. For example, mechanism, 
performer, enabler, input, output, manager and contractor are kinds 
of roles that have their own definition and position in a taxonomy of 
roles. 

The  kinds  of  roles  can  be  used  to  find  the  proper  kind  of 
involvement relation. Further subtypes, other than the ones defined 
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in the in the TOPini section of the Taxonomic dictionary, can be 
defined as and when required.
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7.5.2 Relations between occurrences and between states
Physical  objects,  solid,  liquid as well  as  gaseous ones,  can be in 
various states. This can be recorded by a binary ‘being in a state’ 
relation as is illustrated in Figure 43.

Figure 43, A physical object that is in a state

This also holds for aggregations of physical objects, such as systems 
and  networks.  Such  states  are  typically  temporal  states  during  a 
particular  period  in  time.  The  life  of  physical  objects  might  be 
partitioned in a sequence of such states, also called lifecycle phases7. 

States and occurrences may be related to each other in various ways. 
Such relations may be between states of the same object, or may be 
occurrences  in  which  the  same  object  is  involved,  or  it  may  be 
between  states  and  occurrences  in  which  different  objects  are 
involved. For example, during planning and scheduling of activities 
the sequence of activities is typically constrained by the persons or 
resources that are available and that cannot be involved in different 
activities at the same time. 

Note that a state and an occurrence cannot occur twice, nor can it 
occur after itself. This is expressed in the definition of the relations 
between states and relations between occurrences by specifying a 
constraining relation (5960) that expresses that a state that has a role 
as relator  in a  relation between states cannot  also have a role as 
being related in that same relation.

7 A physical object in a state is sometimes called a 'temporal part' of the 
physical  object  (for  example  in  ISO 15926-2).  A physical  object  in  a 
particular state denotes the same physical object as the partitioned physical 
object. The aspects and relations of a temporal part are only applicable 
during the period of existence of the state (the lifecycle phase).
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Figure 44 illustrates some relations between states and occurrences.

Figure 44, Relations between states and between occurrences

The following relations between states can be distinguished:

o State transitions: <is changed into> (1199).
States  may  change  over  time.  This  is  often  described  as  state 
transitions,  which  are  changes  from  a  pre-state  to  a  post-state 
situation. 

o State sequences: <is a successor in time of> (5815).
A succession of states in time describes a chain of states.

As occurrence is a subtype of state, Relations between occurrences 
(5703) are also subtypes of relation between states (5814), because 
occurrence is a subtype of state (an occurrence is a dynamic state). 
Therefore,  the  following  kinds  of  relations  are  also  subtypes  of 
relations between states:

o Sequences of occurrences: <occurs after> (1388).
Occurrences  may  appear  in  a  particular  sequence,  where  the 
succeeding occurrence starts  after  the termination of  the preceding 
occurrence. 
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Figure 45, Sequences of occurrences

Figure  45 illustrates  two  situations:  Occurrence-2  as  well  as 
Occurrence-3  starts  after  Occurrence-1  is  terminated.  To 
distinguish these two situations, a time gap (a) between the end 
of the preceding and the begin of the succeeding occurrence can 
be specified as a property of the relation. For example: 

o Rel-1 has as aspect T-1
T-1 is classified as a time gap
T-1 has on scale a value equal to 5 min

Note  that  a  negative  value  of  the  time  gap  means  that  the 
succeeding  occurrence  and  the  preceding  occurrence  occur 
partly in parallel.

This is equivalent to defining two subtypes as follows:
o <occurs immediately after>
This  relation  implies  a  time  gap  of  zero  duration.  It  represents  a 
relations such as between Occurrence-1 and Occurrence-2 in  Figure
45.

o <occurs some time after>
This  relation  expresses  that  the  succeeding  occurrence  starts  some 
time after the termination of the preceding occurrence. This represents 
a relation such as between Occurrence-1 and Occurrence-3 with time 
gap (a) in Figure 45. 

o Relation between starts of occurrences: <begins after start of> .
The begin of a succeeding occurrence might be related to the start of a 
preceding  occurrence.  This  corresponds  with  the  relation  between 
Occurrence-1 and Occurrence-3 with time gap (b) in Figure 45. This 
time gap can be specified in the same way as in the previous example.

Note  that  a  time  gap  of  zero  in  this  case  means  that  the  two 
occurrences start at the same time and that a time gap greater than the 
duration of the preceding occurrence means that there is no overlap. 
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The  constraint  that  the  time  gap  is  less  than  the  duration  of  the 
preceding  occurrence  corresponds  with  the  following  subtype 
relation:

o <begins during progression of> (5706).
This kind of relation enables to specify that a succeeding occurrence 
begins  during  progression  of  the  preceding  occurrence,  possibly 
without explicitly specifying the time gap.

o <is triggered by> (2026).
This  kind  of  relation  expresses  that  an  occurrence  is  triggered  by 
another occurrence. Typically the triggering occurrence is an event, 
being a short during occurrence. Typically the triggered occurrence is 
in fact only a creation process or a termination process as is illustrated 
in  Figure 46 below. Such a creation or termination is a part of an 
occurrence.  However,  in  many  cases  it  is  states  that  a  whole 
occurrence is triggered by a triggering occurrence.

o <is a controlling process for process> (5864).
This specifies that a control process controls a controlled process. The 
details of how such a control is effectuated should be specified by a 
specification of the various sensing, controlling and actuating actions 
that  are  part  of  the  control  process,  together  with  the  signals  and 
objects that are involved.

o Cause and effect: <has as cause> (1922).
An  occurrence  can  be  a  cause  of  a  beginning  (creation)  or  a 
continuation after an interruption, or a termination of a state, which 
can be another occurrence. 
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o This is illustrated in Figure 46.

Figure 46, Cause and effect and triggering of occurrences

As a creation or a termination is a subtype of occurrence, which 
is a subtype of state, this kind of relation can be used to specify 
either  that  a  whole  state  is  an  effect,  or  that  a  creation or  a 
termination  is  an  effect.  The  cause  and  effect  relation  has  a 
number  of  subtypes  that  specify  more  precisely  what  the 
relation is between a causing occurrence and a state that is an 
effect:

o <is the cause of begin of> (4671)

o <is the cause of end of> (4672)

o <is the cause of interruption of> (5816)

o <is a reaction to> (5860)
These kinds of  relations express  that  a  state  is  caused to  begin or 
caused to be terminated or caused to be interrupted by or is in some 
way a reaction to an occurrence.

7.5.3 Time of occurrences and states
States can be the case or  occurrences can take place at  a  certain 
moment or within a period in time and that state or occurrence has a 
particular  duration.  A  moment  or  period  in  time  should  be 

157



distinguished from a duration. A duration is a property of a state or 
occurrence, which can be specified independent of when the state or 
occurrence takes place. On the other hand, a moment or period in 
time is always located in the course of time, thus refers to a calendar 
time.

Thus  a  state  or  occurrence  has  a  duration.  The  duration  can  be 
expressed as a numeric value on a time scale (unit of measure). This 
is illustrated in Figure 47. 

Figure 47, Duration of a state or occurrence

The quantification of the duration by a numeric value is discussed in 
paragraph 8.2.

For example, a duration of an occurrence, such as a particular repair 
activity can be expressed as:

Repair-1 has as aspect D-1
D-1 is classified as a duration
D-1 has on scale a value equal to 3.5 hour

Note that a duration can be quantified on a scale just as any other 
property.  The  lower  part  of  Figure  48 therefore  illustrates  the 
specification of the fact that a duration can be quantified on a time 
scale  and  it  provides  a  number  of  subtypes  of  time  scale  as  are 
included in a formalized language dictionary.
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A state or occurrence takes place within some period in time or at a 
point in time, which is located in a calendar time. This is illustrated 
in Figure 48. 

Figure 48, Timing of a state or occurrence

A point in time is  a short  period in time, referred to by a single 
value. A point in time typically has an undefined duration, whereas 
it is typically represented by a period within which something takes 
or took place or started to take place,  such as second in time. A 
period in time has in principle a defined duration, which duration 
may be defined as the duration between two points in time.

There are three possibilities of how an occurrence or state relates to 
a period in time:

o The occurrence happens precisely during the period (4872). This 
happening can be a historic fact from the past (5078) or it can be a 
required happening during a period (partly or completely) in future 
(5080) or it can be an expected happening in a future period (5082), 
seen from the perspective of the moment of registration of the idea.

o The  occurrence  happens  completely  within  the  period  (4871), 
whereas the period is larger than the duration of the occurrence. For 
example an occurrence that starts and stops within a day.
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o The occurrence started before the beginning of the period and/or 
terminated after the end of the period (1785). Thus it is happening at 
least partly during the period.

The latter relation has two subtypes: 

o The occurrence begins at a point in time and continues after that.

o The occurrence terminates  at  a  point  in  time,  and was ongoing 
before that.

A period in time or a point in time is always an individual period. 
For example, an individual period can be a particular day, such as 23 
December 2013 at  the Gregorian calendar.  Such a  date  can have 
various roles in multiple relations with occurrences that take place 
on or during such a day. To facilitate that not every user of Formal 
English needs to allocate UIDs to dates, a generic rule is included in 
the language definition that states:

Dates and times

Thus dates are individual periods, denoted typically relative to a time 
scale which is normally called a calendar. Dates may be denoted in 
different  notations,  such  as  in  a  dd  mmm  yyyy  or  yyyy:mm:dd 
notation,  etc.  in  calendar  time,  such  as  the  Gregorian  calendar. 
Various standard notations for times and dates are defined in ISO 
8601. 

Date: 2013-12-22

Combined date and time in UTC:
2013-12-22T21:08:07+00:00
2013-12-22T21:08Z

Week: 2013-W51
Date with week number: 2013-W51-7
Ordinal date: 2013-356

Table 35, Example date and time according to ISO 8601

Time periods are typically denoted relative to a local time zone in 
which an occurrence takes place. Within such a time zone, the time 
has  a  standard offset  relative  to  the  time scale  called Greenwich 
Mean Time (GMT) or to a time scale called Coordinated Universal 
Time (UTC).  For  example,  Nepal  has  a  standard offset  of  +5:45 
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UTC hours, which means that a particular moment in time, the time 
is denoted in Nepal by a value to which 5:45 hours should be added 
to  get  the  UTC  time  (which  is  nearly  identical  to  the  time  in 
Greenwich during winter). This means that the date value should be 
accompanied by the time scale UTC+5:45.

To facilitate unambiguous references to the same dates in Formal 
English,  each  date  should  represent  by  a  UID.  This  is  done  by 
defining the following rules:

o Dates (periods of a day) between the year 1500 and 3000 in the 
Gregorian  calendar  (also  called  the  Western  calendar)  have  by 
definition a UID between 15.0000.000 and 30.000.000, such that the 
first four digits denote the year, the second two denote the month in 
the year and the last two digits denote the day within the month.

For example UID 20131223 represents  the 23rd of  December 
2013.

o Furthermore, a month in a year is represented by a UID that is a 
number that ends with two zero’s (as if it is day zero). For example, 
UID 20131200 represents the period December 2013.

o Finally, a year is represented by a UID that is a number that ends 
with  four  zero’s.  For  example,  UID 20130000 represents  the  year 
2013. 

The standard offset relative to GMT or UTC is in fact using another 
time scale that is defined by a shift relative to a standard time scale. 
To explicitly model the time scale, it can be recorded that a time 
value is a quantification on a particular time scale, such as UTC, 
UTC+1, UTC+5:45, etc. For example:

A-1 is beginning at point in time 2013:12:23:16:08 UTC+1

A date-time value may include not only seconds, but also parts of 
seconds. A convenient time scale for that is an epoch date system, 
which uses a rational number for the number of seconds (and parts 
of seconds) since the epoch date. Thus the date value (in seconds) 
has as unit of measure the epoch date system. For example the ‘2000 
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date system’ 8 An example of the quantification of a moment in time 
in seconds since 1 January 2000 is:

T-1has on scale a value equal to 441806615,3 s since 
2000

Note  that  the  unit  of  measure,  such as  ‘s  since  2000’  should  be 
defined in the dictionary.

8 See: http://en.wikipedia.org/wiki/Epoch_%28reference_date%29
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7.5.4 Time of occurrences about physical objects
The period within which an occurrence about a physical object takes 
place, or the moment at which it takes place, is often not recorded as 
a timing of an occurrence, but as a relation between a period in time 
or date and the physical object that is subjected to the occurrence (or 
as an ‘attribute’ of the physical object), as is illustrated in Figure 49. 

Figure 49, Timing of occurrences about physical objects

However, semantically a particular period in time or date can have 
various roles at the same time. For example, a particular date can be 
(have a role as) arrival date and birth date and release date, etc. of 
the same or different things together. Therefore, the timing of such 

163



an occurrence in which a physical object is involved is expressed as 
a relation between the physical object and a period in time.

Examples of dates at which something about a physical object takes 
place are:

Train A has as arrival time 10.38 h

Thus, the role of the period in time (or of the date) can be used to 
find the proper kind of relation, and additional kinds of relation can 
be added as and when required.

Note that each kind of relation can be denoted by an inverse phrase, 
when  the  left  hand  and  right  hand  objects  in  the  expression  are 
inversed. For example, the kind of relation <has as completion date> 
can be denoted by an inverse  phrase as  is  used in  the following 
expression:

3-3-2000 is completion date of Project X

7.5.5 Location of occurrences and states
States are the case and occurrences happen at a particular place or 
location. Such a place or location can be denoted as at a physical 
object  or  at  a  space.  The relation that  is  used to  specify  that  an 
occurrence takes place at a location that is denoted by a physical 
object is illustrated in Figure 50.

Figure 50, Occurrence at a place
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The relation that  is  used to specify that  a  state  is  the case or  an 
occurrence takes place at a location that is denoted by a space is 
illustrated in Figure 51.

Figure 51, Location where something is the case

To denote that  an occurrence takes place at  a location it  is  more 
natural to use the synonym phrase <occurs at location>. The space 
can be denoted as being at a spatial point or along a line (a path), on 
a surface or in a volume.

7.6 Relations between objects involved in 
occurrences

Physical objects that are involved in an occurrence in different roles 
are often directly related to each other, without explicitly mentioning 
the occurrence. For example, it can be expressed that a particular 
company <is the manufacturer of> a particular individual physical 
object. This can be done by using such a phrase for the involvement 
relation or its inverse phrase as follows:

My car is manufactured by Volvo Sweden

Such  a  the  relation  implies  that  there  has  been  some production 
process  in  which  the  party  and  the  object  were  involved  as 
manufacturer and as manufactured respectively. Thus although from 
such a relation it can be deduced by logic that there is or has been an 
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occurrence, that occurrence may remain implicit in the model. Thus 
such kinds of relations are short-cut relations for models in which 
the occurrence is explicit. Figure 52 illustrates a number of subtypes 
of such a kind of short-cut relation. The subtype kinds of relations 
relate objects that are both involved in the same occurrence, each in 
its own role.

Note  that  the  roles  can  be  played  by  physical  objects,  including 
social  entities,  such  as  organizations  and  families  as  well  as 
individual  persons.  Furthermore,  some  kinds  of  relations,  for 
example a custodianship may be regarding an individual thing that is 
not a physical object.

Figure 52, Relations between objects involved in occurrences
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Short-cut  relations  are  sometimes  denoted  by  a  phrase  that  is 
expressed from the perspective of the first role player in the relation 
and  sometimes  by  an  inverse  phrase  that  is  expressed  from  the 
perspective of the second role player in the relation. Therefore, the 
left hand object is either a performer or is subjected to the activity. 

Further subtypes, other than the ones already defined in the upper 
ontology section of the Taxonomic dictionary, can be defined as and 
when  required.  It  should  be  noted  that  these  kinds  of  short-cut 
relations  imply  occurrences  that  may  not  appear  explicit  in  the 
information model. However, if such an occurrence is made explicit, 
possibly at a later stage, then the objects that are involved in that 
occurrence are  not  automatically  recognized as  being involved in 
that occurrence.

7.7 Facts caused by acts
The  short-cut  relations  of  the  kinds  that  are  mentioned  in  the 
previous  paragraph are  by  definition  caused by an  occurrence  of 
particular kinds. The definitions of the kinds of short-cut relations 
define by what kind of occurrences they are caused. In a modeled 
definition this is specified by a relation of the kind <is by definition 
caused by a>. For example, the fact that my car is manufactured by 
an organization by definition implies that that fact is caused by a 
manufacturing activity. This can be expressed as follows:

Name of left hand 
object

Name of kind of relation
Name of right 
hand object

is manufactured by is by definition caused by a manufacturing
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A number of examples of such relations between facts and acts are 
given in Figure 53.

Figure 53, Facts caused by acts

Relations between the kinds of relations and the causing kinds of 
occurrences are included in the upper ontology section of the Formal 
English Taxonomic dictionary to provide a basis for logic reasoning 
either to derive an occurrence and its classification, or to verify the 
consistency  between  short-cut  relations  and  occurrences  that  are 
explicitly included in an information model.
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7.8 Purposes and objectives
The  reasons  why  people  create  things  are  the  purposes  for  the 
existence  of  things.  There  are  also  objectives  why  occurrences 
should  take  place.  This  objective  can  be  in  order  to  achieve  a 
particular state or in order to prevent a particular state. 

The kinds of relations that can be used to express such purposes are 
presented in Figure 54.

Figure 54, Purposes of existence

Note  that  the  ‘possession  of  purpose’  is  a  relation  between 
something and a state that has a role as purpose. The thing that has a 
purpose of existence can also be a relation, or an occurrence (which 
is  modeled as a higher order relation).  For example a connection 
relation A-B has as objective to achieve that ‘A is connected to B’ 
(which is a state). 
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7.9 Collections
A collections of things is a plural object (with a UID) in which the 
collected  things  have  no  particular  role,  apart  for  possibly  being 
arranged in a sequence. The collected things are assumed not being 
connected. There are various kinds of collections, dependent of the 
kinds of  things in  the collection:  collections of  individual  things, 
collections  of  kinds  and  mixed  collections.  Different  kinds  of 
relations are to be used to express relations with different kind of 
collections. This illustrated in Figure 55.

Figure 55, Specifying a collection

Figure  55 illustrates  how things  can  be  explicitly  declared  to  be 
elements in a collection. The generic collection relation (2846) can 
be  used  for  specifying  elements  in  any  kind  of  collection  (with 
individuals,  kinds  or  both).  This  also  holds  for  its  first  three 
subtypes.  The  first  and  the  second  subtype  express  a  particular 
position of an element in a collections in which the elements are 
arranged in a sequence, such as in a list. Note that any particular 
collection  needs  to  be  classified  as  a  collection  or  as  one  of  its 
subtypes, such as list,  row, stack, etc. and may be classified as a 
collection of individual things or as a collection of kinds.
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By using the <is an element of> relation (1227) it can be specified 
that the collected thing is an individual things and that the collection 
is constrained by being a collection of individual things. If one of the 
two is not consistent with other information about the related things, 
the software should generate an error message. 

Note that a collection of individual things has an identity (UID) and 
may consist of a number of physical objects, each with their own 
identity. Those physical objects might be put in some kind of bag or 
package. Then the filled bag or package is a new whole with another 
identity. This bag or package is not a collection, but it is a composed 
object  that  is  a composition of the bag and (the elements in) the 
collection. 

Usage of an <is an element in collection of kinds> relation (4730) 
implies the constraint that the collected thing should be a kind and 
the collection is a collection of kinds only. 

Apart from definition collections by their elements, there are various 
other  relevant  kinds  of  relations  between  single  things  and 
collections. A number of them are presented in Figure 56.
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Figure 56, Relations between single things and collections

Sometimes it is required to specify that a collection is complete for 
the composition of a particular composed object. This means that the 
necessary and sufficient elements for a particular purpose are present 
in  such  a  collection.  This  can  be  expressed  using  relation  5645 
which is a relation between a complete collection and an object that 
is or can be composed from the collection. For example a complete 
inventory  may  specify  that  a  collection  consists  of  all  the 
components that are necessary to make a particular assembly.

The relation <is an assembly of the elements in> (5623) specifies 
that each element in the collection is or is intended as a part of the 
indicated assembly. 

The  relation  <is  presented  on  one  of>  (5627)  expresses  that 
something  is  presented  on  at  least  one  of  the  elements  in  a 
collection.  For  example  it  may  be  expressed  that  some object  is 
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presented  on  at  least  one  of  the  documents  in  a  collection  of 
documents. 

The  relation  <has  as  parameter  list>  (5348)  expresses  that  a 
particular list is a parameter list for some object. Typically a list for 
some mathematical function or software module.

For  the definition of  the other  kinds of  relations,  see the Gellish 
taxonomic dictionary.

7.10 Sequences and location of things in space
The position or location of an individual thing in space, such as the 
location of a physical object or an aspect, can be expressed with a 
location relation between the located thing and the physical object 
that acts as a reference. This is illustrated in Figure 57.

Figure 57, Relative placement

The reference location can be a large physical object or a small one, 
such as  a  physical  point.  This  relative  placement  is  specified  by 
using a simple binary relation. The accuracy of the location depends 
on the size of the reference object. The relation does not specify the 
precise position within the reference object, not does it specify the 
orientation of a located physical object. The location of an object in 
a coordinate system is described in the next paragraph. 

Elements in a sequence

Another kind of arrangement includes that a location is specified as 
a relative position in a sequence,  without explicitly specifying an 
absolute position. For example, it can be stated that individual things 
(A through N) are at particular positions in a sequence. This implies 
that  those  individual  things  that  are  arranged  are  elements  in  a 
collection (comprising the things in the sequence). The latter can be 
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made explicit by declaring for each thing that it is an element in the 
collection. This is described in par.  7.9. The combination of being 
element  of  a  collection  and  being  arranged  in  a  sequence  is 
illustrated in Figure 58.

Figure 58, Elements of a collection arranged in a sequence

To specify  the  complete  sequence,  in  principle  it  is  sufficient  to 
specify  for  each  pair  in  the  sequence  which  one  is  next  to  the 
previous one. However, to be specific on the completeness of the 
chain it can be valuable to specify which one is the first one in the 
chain  and  which  one  is  the  last  one  after  the  one  but  last  one. 
Therefore, as shown in Figure 59, the sequence relation (5332) has 
subtypes for the first and last element.

Thus a sequency relation specifies that:

o A  component  is  the  next  component  after  another  component 
(5332). 
The first and the last component in a sequence requires the use of the 
following subtypes of a sequency relation:

o Being  a  first  element  before  a  specified  other  element  in  a 
sequence (5932).

o Being the last element after a specified other element in a sequence 
(5338).
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Figure 59, Arrangement of individual things in a sequence

Figure  59 also  shows  two  other  subtypes,  one  indicating  that  a 
sequence is ordered from low to high and a relation that specifies 
that a sequence is an arrangement (a location) in space.

A specification of a sequence can be accompanied by a specification 
that the elements in the row belong to a particular collection. This 
can be specified by declaring for each thing that it <is collected in> a 
particular collection as described in par. 7.9. 
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7.11 Binary logic relations
Figure 60 presents a number of binary relations that originated in 
logic and mathematical set theory. They are applicable to semantic 
modeling as they define specific characteristics of various categories 
of  binary  relations.  Such  characteristics  can  be  used  to  formally 
deduce consequences from statements that use kinds of relations that 
are a subtype of one or more of these kinds of binary relations. 

Figure 60, Kinds of binary relations

The last two kinds of relations, single valued relation and inverse 
single valued relation, are well known in data modeling, but should 
be used with care, because they are specialized versions of the more 
general  cardinality  constraints  specifications  as  are  applicable  for 
relations between kinds of things (see chapter 10). An expression of 
a binary relation between kinds of things has in principle left hand as 
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well as right hand simultaneous cardinality constraints. An n,m right 
hand cardinality pair of constraints means that one individual of the 
kind at the left hand side may have minimally n and maximally m 
number of individuals of the kind at the other side at the same time 
for the specified kind of relation. However, those constraints may 
vary between possibilities,  requirements and definitions about  the 
same kind of relation. Furthermore, it should be noted that in Gellish 
they  are  defined  as  simultaneous cardinality  constraints,  which 
means that they hold for relations that have a validity period that 
overlap in time, but the constraints do not apply for relations that do 
not overlap in validity period.

7.11.1 Parent-child relations
A  typical  example  of  a  transitive  and  irreflexive  relation  is  an 
ancestor relations and its further subtypes as presented in Figure 61.

Figure 61, Transitive and irreflexive relations: ancestor relations
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An ancestor  relation  (<is  an  ancestor  of>,  5966)  is  defined  as  a 
relation  chain  between  individual  things  that  indicates  that  the 
person that has a role as ancestor has as descendant the person that 
has a role as descendant.

The  ancestor  relation  is  therefore  a  subtype  of  ‘binary  relation 
between  individual  things’.  However  it  is  also  a  subtype  of 
‘transitive relation’ and a subtype ‘irreflexive relation’. This means 
that conclusion can be drawn from a chain of such relations. 

For  example,  if  some  expressions  in  Formal  English  state  the 
following:

A is an ancestor of B 
B is an ancestor of C

Because it is included in the definition of Formal English that the 
ancestor  relation  is  defined  as  a  subtype  of  transitive  relation, 
therefore from formal logic it can be deduced that 

A is an ancestor of C

Nevertheless  the  latter  statement  is  not  explicit  in  the  Formal 
English expressions.

Furthermore,  it is included in the definition of Formal English that 
the ancestor relation is defined as a subtype of irreflexive relation. 
Therefore  from formal  logic  it  can  be  deduced  that  B  is  not  an 
ancestor of A, etc. This expressed in Formal English by a denial, as 
follows:

denial: B is an ancestor of A 
denial: C is an ancestor of B

As well as:

denial: C is an ancestor of A

The multiple supertypes of the ancestor relation are inherited to the 
subtypes  of  that  relation.  Thus  similar  conclusions  can be  drawn 
from expressions about parents, grandparents, father, mother, etc.
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7.12 Correlations
7.12.1 Correlations between individual aspects
The values of various aspects of things are often dependent on the 
values of other aspects of the same thing or of other things. In such 
cases the aspects are correlated. 

Figure 62, Correlation between aspects

Typically such an individual correlation between individual aspects 
can be modeled as a higher order relation between multiple aspects, 
whereas  the  aspects  act  as  parameters  in  the  correlation. 
Furthermore, such a correlation is often concerning (aspects of) one 
individual physical  object.  Then that  physical  object  is  called the 
subject of the correlation. 

For example, an individual physical object B-1 with a mass M-1 is 
subject  to  a  force  F-1,  which  result  in  its  acceleration  A-1.  The 
physical  law that  is  discovered by Newton states that  there is  an 
individual correlation C-1 between that mass, force and acceleration. 
Such  an  individual  correlation  can  be  classified  as  being  an 
exemplar  of  a  known conceptual  correlation,  such  as  the  law of 
Newton. Thus for example: F-1 = M-1 * A-1 is classified as a F = m 
* a correlation. The above ideas can be expressed as follows:

C-1 is a correlation with as subject B-1
C-1 has as parameter M-1
C-1 has as parameter F-1
C-1 has as parameter A-1

The classifications of these individual things specify what kinds of 
things they are:

C-1 is classified as a law of Newton
B-1 is classified as a rocket
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M-1 is classified as a mass
F-1 is classified as a force
A-1 is classified as a acceleration

The first  four  of  the  above expressions  state  that  the  aspects  are 
correlated, but not how they are correlated. The classifications of 
each of the individual things specify what the things are, whereas the 
classification of the correlation as a ‘law of Newton’ refers to a kind 
of  correlation  which  definition  specifies  how the  parameters  are 
correlated. 

The above is an example of the typically case that a correlation in an 
individual case is a special case of a general law. The definition of a 
general  law,  such  as  the  law  of  Newton,  can  be  modeled  as  a 
conceptual  correlation  between  kinds  of  aspects.  The  latter  is 
discussed in par. 10.9.

7.12.2 Comparison of characteristics
Sometimes  statements  are  made  about  the  relative  value  of  two 
different  characteristics.  This  can  be  done  with  or  without 
quantifying the characteristic. These are kinds of binary correlations 
in which aspects are compared to each other regarding their value or 
declared to which extent they are the same or different from each 
other. 
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The  various  ways  in  which  characteristics  can  be  compared  are 
illustrated in Figure 63.

 

Figure 63, Comparison of characteristics

For example, it may be stated that:

risk-1 is less than risk-2
distance-1 is greater than distance-2
range-1 is unequal with overlap to range-2

The kind of relation <is greater than> with its inverse <is less than> 
and the kind of relation <is unequal with overlap> can be 
meaningfully accompanied by an extent to which they are greater or 
less than or to which extent they overlap (see par. 7.1.1)
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7.13 Positioning of objects in coordinate systems
The location of individual things specified more precisely when they 
are  positioned  in  a  coordinate  point  that  is  defined  as  part  of  a 
coordinate system (a property space), as is illustrated in Figure 64. 

Figure 64, Position of an individual thing is a coordinate system

When a physical object is positioned in a coordinates point, it means 
that  the origin of  a  coordinate  system in which the shape of  the 
positioned  physical  object  is  defined  is  located  on  a  coordinates 
point  in  a  coordinate  system  of  a  reference  physical  object.  To 
identify the proper coordinate system it is possible to specify which 
physical  object  is  the  reference  object  for  which  the  coordinate 
system is  defined.  Furthermore,  the  coordinates  point  has  one  or 
more properties as its coordinates, such as distance in x-direction, 
orientation angle, latitude, etc. 

The following table provides an example of the specification of the 
coordinates of the Eiffel Tower. 
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Name of left hand 
object

Name of kind of 
relation

Name of right 
hand object

the earth has as coordinate system
UPS coordinate 
system

The Eiffel Tower is positioned in Coordinate pt-1

Coordinate pt-1
is defined in coordinate 

system
UPS coordinate 
system

Coordinate pt-1 has as coordinate Longitude-1
Coordinate pt-1 has as coordinate Latitude-1
Coordinate pt-1 has as coordinate Elevation-1

Table 36, Specification of coordinates

Each  of  the  individual  things  in  the  above  example  needs  to  be 
classified, whereas the properties need to be quantified by a numeric 
value on a scale. For example, the coordinates of Greenwich, which 
is  the reference longitude for the UPS coordinate system, can be 
expressed as follows:

Name of left 
hand object

Name of kind of 
relation

Name of right 
hand object

UoM

UPS coordinate 
system

is classified as a
coordinate 
system

Coordinate pt-1 is classified as a coordinate point
Longitude-1 is classified as a longitude

Longitude-1 has on scale as value 0, 0, 0
deg, 

min, sec
Latitude-1 is classified as a latitude

Latitude-1 has on scale as value 51, 28, 38,
deg, 

min, sec
Elevation-1 is classified as a elevation
Elevation-1 has on scale as value 500 m

Table 37, Quantification of coordinates

A coordinates point typically is a three-dimensional relation between 
angles and/or distances, but in other coordinate systems it can be one 
or  two dimensional.  The number of  dimensions (the rank) of  the 
coordinate  system can be  specified,  as  well  as  the  scale  (unit  of 
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measure)  for  each  dimension  or  for  all  the  dimensions  of  the 
coordinate system as a whole.

Note  that  a  triple  of  values  (numbers,  separated  by  comma’s)  to 
denote  a  value  of  an  angle  in  degree,  minutes  and  seconds 
respectively, is regarded as one qualitative value with one UID. This 
notation  allows  for  negative  values.  Another  notation  where  the 
numbers and units of measure are combined in one string, together 
with a character to denote the northern or southern hemisphere is 
also  allowed.  For  example,  the  value  51°  28'  38"  N denotes  the 
longitude of Greenwich at the northern hemisphere and 51° 28' 38" 
S is a point at the same angle on the southern hemisphere.
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8 Relations between an individual thing and 
a kind

A relation between an individual thing and a kind of thing can be 
either  a  classification  relation  or  it  tells  something  about  the 
individual thing by relating it to a kind, without specifying the other 
individual  thing  of  that  kind.  The  latter  typically  means  that  the 
individual thing is related by a relation of a particular kind to some 
individual thing that is classified by that kind.

For  example,  the  statement  that  a  particular  building  B-1  has  an 
elevator, is a statement that specifies that some individual thing has 
a part that is of a particular kind, without identifying that individual 
part. This can be expressed as follows:

B-1 has a part that is classified as a elevator 

This relation is in fact a short-cut relation that implies that there is 
some object that is a part of B-1 and that is classified as an elevator,  
although  that  object  may  not  appear  in  this  part  of  the  model. 
However,  it  might well  be that  that  individual part  appears to be 
explicit elsewhere in the model. The verification of the consistency 
of the model is further discussed in par. 8.4.1. 
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Figure  65 presents  some  examples  of  kinds  of  relations  in  this 
category. 

Figure 65, Kinds of relations that classify relations between an 
individual thing and a kind

Typically these kinds of relations are denoted by phrases that start 
with <is> or <has>, whereas the phrases include a role and terminate 
with  <a>.  Exceptions  on  this  rules  are  kinds  of  relation  about 
qualitative aspects (see next paragraph) that are denoted without a 
preceding <a>. This is the case because qualitative aspects, which 
include pieces of information (qualitative information), are defined 
as kinds of things.

Note that the list of kinds of relations in Figure 65 is incomplete. Each 
of the kinds of relations has or can have further standard subtypes and 
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can  get  additional  subtypes  as  and  when  required.  The  following 
paragraphs discuss the categories and their subtypes in more detail.

8.1 Classification
Classification  of  individual  things  is  a  prime  means  to  enable 
interpretation  of  what  the  nature  of  the  individual  things  are. 
Therefore,  for  a  proper  interpretation  it  is  required  that  each 
individual thing is classified. This holds for all categories of things, 
such as physical objects, aspects, roles, occurrences, relations, etc.

Classification is a relation between an individual thing and a kind 
that states that the individual thing is characterized by that kind. The 
interpretation is only possible when the kinds (also called concepts) 
are defined in a taxonomic dictionary.

Figure  66 presents  a  number  of  subtypes  of  the  classification 
relation.
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Figure 66, Subtypes of the classification relation

The subtypes are further discussed in the following paragraphs.

8.1.1 Classification by nature
The  ordinary  classification  relation  (<is  classified  as  a>,  1225) 
usually classifies an individual thing by its nature or characterizing 
aspects. It tells what kind of thing it is. Especially solid items are 
typically classified by their nature, which for artifacts is determined 
by the characteristics of the classified items such as their shape and 
construction materials that make an object suitable as performer or 
enabler  of  a  particular  kind of activity or  process (also called its 
function). 
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Note that a classification of an individual thing by a kind implies 
that  the  individual  thing  is  implicitly  also  classified  by  all  the 
supertypes of that kind as defined in the taxonomy. This makes that 
classification by a more specialized kind expresses more knowledge 
about  the  individual  thing,  which  knowledge  implies  the  more 
generic classifications. 

Examples  of  classifications  of  physical  objects,  aspects,  roles  of 
physical objects or parties and occurrences are:

Obj-1 is classified as a building
Obj-2 is classified as a room
Prop-1 is classified as a velocity
Prop-2 is classified as a color
Role-1 is classified as a tool
Role-2 is classified as a supplier
Act-1 is classified as a meeting
Proc-1 is classified as a corrosion

The richness  of  the taxonomic dictionary determines the possible 
classifications  by  predefined  kinds  and  the  extent  to  which  new 
kinds need to be defined in a project.

8.1.2 Classification of aspects of implied parts
In many cases aspects  of  components are modeled as if  they are 
aspects of a higher level of assembly and without explicit modeling 
of the component. For example, assume that for a pump P-1 it is 
specified that it has an inlet diameter D-1. Then D-1 is often treated 
as a property of the pump, without modeling the inlet explicitly as a 
separate  component.  Then  D-1  will  not  be  classified  just  as  a 
diameter (which would suggest that it would be a diameter of the 
pump), but it will be classified as an ‘inlet diameter’. 

This  example  illustrates  that  in  such  cases  the  aspects  are  not 
classified  by  a  normal  kind  of  aspect,  but  by  a  kind  of  intrinsic 
aspect. A kind of intrinsic aspect is a role of an aspect that is by 
definition  possessed  by  a  particular  kind  of  physical  object. 
Therefore  kinds  of  intrinsic  aspects  have  names  that  include  the 
name  of  the  kind  of  physical  object  of  which  it  is  an  aspect. 
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Typically the kind of physical object is a component in an assembly. 
Other examples of kinds of intrinsic aspects are pipe diameter and 
wall  thickness.  These  are  apparently  a  diameter  of  a  pipe  and  a 
thickness of a wall. However, the components, such a pipe or wall, 
are often not identified or specified explicitly. Semantically, intrinsic 
aspects  are  roles  of  aspects,  so  that  they  are  subtypes  of  ‘role’. 
Therefore, the classification of an aspect by a kind of intrinsic aspect 
is in fact a classification of an aspect by role (see also par.8.1.4). 
Thus, examples of classifications of aspects by a kind of intrinsic 
aspect are:

Prop-1 is classified as a pipe diameter
Prop-2 is classified as a wall thickness

Or semantically more precise:

Prop-1 is classified by role as a pipe diameter
Prop-2 is classified by role as a wall thickness

The definition models of kinds of intrinsic aspects relate the kinds of 
intrinsic aspects to the kinds of physical objects. For example, such a 
model includes a relation that expresses that a 

pipe diameter is by definition an intrinsic aspect of a pipe. 

Note  that  the  whole  phrase  is  the  name  of  a  kind  of  relation. 
The definition of kinds of intrinsic aspects is further discussed in 
chapter 9.

8.1.3 Classification by substance
Batches or streams of fluid are not only classified by their nature as 
a  batch  or  stream,  but  typically  they  are  also  classified  by  the 
substance (stuff) that composes the fluids. For example:

Str-1 is classified as a batch of liquid
Str-1 is classified by substance as paint

Similarly,  solid  items  are  often  classified  by  a  material  of 
construction (stuff) from which the things are made. This is also a 
classification by substance, although typically the phrase <is made 
of> is used for such a classification relation. For example:

190



P-1 is classified as a bolt
P-1 is made of stainless steel

The  phrase  <is  made of>  does  not  refer  to  a  historic  production 
process but merely relates the actual state of P-1 to the stuff from 
which P-1 is constituted.

8.1.4 Classification by role
Physical objects are often classified by the role they play or the role 
they  are  intended  to  play.  Kinds  of  physical  objects  can  be 
distinguished from kinds of roles, because a role is not an intrinsic 
aspect, but an extrinsic aspect. A role is only played as long as a 
physical object is functioning or installed and in use or operating. 
When a physical object is taken out of its operational context, for 
example by putting it in a warehouse, then you cannot interpret its 
role  from  its  intrinsic  aspects.  The  same  holds  for  persons  and 
organizations. For example student is not a kind of person, but a role 
of a person and customer and supplier are nor kinds of parties, but 
roles of parties. 

Thus a taxonomic dictionary should also include kinds of roles so 
that  physical  objects  can  be  classified  according to  their  kind  of 
(intended or actual) role.

The phrase <has a role as a> is therefor used as a synonym of the 
phrase <is classified by role as a>.

Examples of classification by role are:

John has a role as a student
John has a role as a project manager
John has a role as a customer
Str-1 has a role as a input
Str-1 has a role as a output

8.1.5 Qualification of aspects by value (qualitative aspects)
To specify what an individual aspect is, it is necessary to classify it  
by the nature of the aspect. For example, an individual aspect, such 
as A-1, can be classified as a length, diameter, temperature, color, 
toxicity, number of items, etc.
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However, aspects are not only classified by their nature, but they can 
also  be  qualified,  quantified,  compared  to  or  constrained  by  a 
qualitative aspect. Such a specification of a constraint is in fact a 
categorization  or  classification  of  the  aspect  by  taking  the  size, 
magnitude or severity of the aspect as a criterion and relating it to a 
qualitative value of such an aspect. Therefore, the specification of a 
constraint is defined to be a subtype of classification. 

A qualitative aspect  is  a  kind of  aspect  value,  which is  typically 
included in a list of allowed values, from which a constraining value 
is selected.

The qualification of an aspect implies a qualification relation with a 
qualitative aspect, as is illustrated in Figure 67.

Figure 67, Classification and qualification of 
an individual aspect

A qualitative aspect is a value that may qualify an aspect. The value 
can be non-numeric or numeric. Qualitative values are also part of 
the formalized language and thus they are typically also included in 
the taxonomic dictionary and can be added as and when required.

If a value is non-numeric, then the value is typically denoted by a 
character  string that  is  a  term or  name for  a  ‘textual  value’.  For 
example, the above kinds of aspects (also called conceptual aspects) 
can have qualitative values, such as many, tall, hot, red and toxic.

Examples of classifications and qualifications of aspect are:

T-1 has aspect H-1
T-1 has aspect C-1
H-1 is classified as a height
H-1 is qualified as tall
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C-1 is classified as a color
C-1 is qualified as red

A qualitative aspect is a concept that is typically denoted by a name 
consisting  of  a  character  string.  However,  a  special  case  of 
qualification  is  a  qualification  by  a  quantitative  property  value 
(which is identified by a UID) which is in fact a quantitative value 
on a scale, in which case the number and the scale are not separated 
as two distinct things. In such cases the quantitative value is denoted 
by a character string that includes one or more numbers as well as a 
scale. For example, one may specify the following:

H-1 is qualified as ‘500 mm’
T-1 is qualified as ‘37 degC’

Or a surface area is specified as follows:
A-1 is qualified as  ‘3 x 5 inch’

Therefore it is a concept that can have a modeled definition which 
relates the value to the appropriate number(s) as well as to the scale 
(as is  discussed in par.  9.5).  Such qualitative values may also be 
included in a formalized language dictionary. 

However,  the  above  method  will  result  in  a  ‘combinatorial 
explosion’ in the dictionary, because of the nearly unlimited amount 
of  combinations of  numbers and scales.  Therefor,  in Gellish it  is 
preferred  that  a  qualification  by  such  a  quantitative  aspect  is 
replaced  by  a  quantification  relation  between  the  (individual) 
property and a number, with a separate specification of the scale that 
is used for the quantification. This is further discussed in paragraph 
8.2.

Because  of  this  possible  quantitative  nature  of  the  constraining 
qualitative  aspect,  the  comparison of  an individual  aspect  can be 
with a point value, but also with a range. And a constraint can be 
that an aspect value is equal, unequal, approximately equal, higher 
or lower than the point value and it can be within or outside (not 
within)  a  range.  For  those  porposes  we  need  separate  kinds  of 
relations.
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Figure 68, Comparison of aspects with qualitative aspects

Note that the range in  Figure 68 has a value (with an UID) that is 
denoted by the character string, such as in the example ’10-20 cm’.

8.1.6 Classification of collections
The classification of a collection means that the collection as a 
whole is classified by a kind of collections. For example:

C-1 is collectively classified as a collection of aspects

Such a classification is semantically different from a relation 
between a collection and a kind with the meaning that each element 
in the collection is of that kind.

Figure 69, Collective classification

The latter relation implies a classification of each element in a 
collection, without mentioning or even recognizing every element in 
the collection. An example of a combination of the two relations is:

C-2 is collectively classified as a collection of items
C-2 each of which is classified as a M6 bolt

8.2 Quantification of properties on scales
Aspects,  especially  physical  properties,  such  as  diameter, 
temperature, etc., can not only be qualified (e.g. as high or low), but 
normally they are quantified by relating them to a numeric value on 
a scale.
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If  an  individual  aspect  is  a  numeric  quantity,  then  the  relation 
between the individual aspect and the quantitative value (typically a 
number) is a quantification relation (2044). For example the number 
of bolts in our stock <is quantified as> 15. 

This is illustrated in Figure 70. 

Figure 70, Quantification of aspects on scales

The quantification of a number of things is usually considered to be 
a quantification without  using a scale.  However,  this  can also be 
considered to be a quantification on the scale ‘piece’, because it is 
also possible to quantify a number of things as a number of pairs or 
dozens, thousands, moles, etc. For example:

N-1 is quantified as 2

This is equivalent to:

N-1 has on scale a value equal to 2 piece

Similarly:

N-2 has on scale a value equal to 3 dozen
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Thus aspects are typically quantified by a number on a particular 
scale  (5786).  The  use  of  a  quantification  relation  in  those  cases 
implies that a specification has to be provided of the qualitative scale 
(unit of measure) that classifies the quantification relation. Thus the 
relation between the aspect and the number is not only classified as a 
quantification relation on a scale, but that relation is also classified 
as a quantification on a particular scale. In other words, the relation 
with the scale is a second classification of the quantification relation. 
A qualitative scale is also called a unit of measure, but it denotes a 
method  to  relate  a  property  to  a  number.  For  example  ‘deg  C’ 
indicates a method created by Anders Celcius about how to allocate 
numeric values to measured temperatures.

Furthermore an aspect can be quantified as equal to, greater than or 
less than the numeric value. It is also possible that the value of an 
aspect is variable in time and/or space9, which implies that there are 
also  avarages  over  time  and/or  space.  This  means  that  we  need 
relations that enable to relate to values that are averages, or better: 
values for average properties, such as a daily average temperature.

Examples of quantifications of aspect by a number on a scale are:

H-1 has on scale a value equal to 300 m
T-1 has on scale a value greater than 30 deg C

Note that an aspect, such as the height H-1, can be quantified as well 
as qualified, as is described in the previous paragraph.

As said before, the value of an aspect can also vary over time or 
space. For example, when a property is measured at some sampling 
rate by a measuring device, such as a thermometer, it may create 
many measured values at different moments in time. In most cases 
those values can be recorded as discrete values for which it is 
indicated that they are measured at different moments in time. This 
is illustrated in Table 38 in which the same property (T-1) has 
different values, which is recorded as different ideas about facts, 
each of which has a different validity period.

9 For details about the modeling of varying values over time and space is 
discussed in the book ‘Semantic Modeling Methodology’ (Ref. 2)
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Name 
of left 
hand 
object

Name of kind of 
relation

Name of 
right 
hand 
object

Unit of 
measure

Date-
time of 
start of 
validity

Date-
time of 
end of 

validity

T-1
has on scale a 
value equal to

25 deg C t1 t2

T-1
has on scale a 
value equal to

30 deg C t2 t3

Table 38, Property values that vary over time

Note that conventional systems usually allow for only one value for 
a property, whereas they may even define a property as something 
that has only one value. However, we follow the normal practice in 
technology that  properties  can have multiple  values  in  time (and 
space). Thus a property, such as T-1, does not change when its value 
changes.

The date-time of start of validity and end of validity determine the 
period during which the statement is valid, thus for example they 
determine the period during which a property has a  value that  is 
considered equal to the specified qualitative (or quantitative) value. 
When  the  two  date-time  values  are  equal  it  is  assumed  that  the 
validity  period  lies  within  the  period  determined  by  that  single 
specified value. Often such a time stamp is seen as a moment in time 
without a duration. However, even the specification of a second or 
piece  of  a  second  implies  some  minimal  duration,  such  as  the 
duration of a second. 

The  specification  of  these  date-time  values  are  in  fact  separate 
binary  ideas,  called  contextual  facts,  as  is  further  described  in 
paragraph 7.5.3. 

Quantification by property value ranges

In some cases a property is quantified on a value range. This can be 
specified by two quantification statements: one that specifies that the 
property <is quantified as greater than or equal to> a specified value 
and a second statement that the property <is quantified as less than 
or equal to> another specified value at the same time. This has as 
disadvantage  that  it  is  always  required  to  search  for  a  second 
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statement. It is simpler to specify that a property has a value within a 
range. For example by a statement such as:

T-1 has on scale a value within numeric range 20-30 degC

A numeric range is a qualitative value (a kind of aspect) that has to 
be defined quantitatively in the dictionary. The definition of numeric 
ranges is discussed in paragraph 9.5. 

8.3 Textual information about individual things
A piece of textual information, called qualitative information, can be 
related to an individual thing or can be related to some kind of thing.  
The upper half of Figure 71 presents several kinds of relations that 
relate an individual thing to a piece of qualitative information. The 
lower  half  presents  kinds  of  relations  that  can  be  used  to  relate 
anything to a piece of information, including also individual things.
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Figure 71, Information about individual things

Note that the piece of information (the qualitative information) that 
describes, specifies, or contains a description of the individual thing 
is an object that will have a UID and may have a name, whereas it is 
defined  by  a  description,  being  the  information  content.  This 
description is independent of the way in which it is presented or may 
be presented in multiple ways in particular formats on information 
carriers. For example, the text of a requirement (P-101 shall …) is a 
description  of  an  object,  called  ‘Req.  5.1’,  which  object  is  the 
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qualitative  information  in  which  P-101 is  described.  This  can  be 
expressed as follows:

Left hand 
object

Relation type
Right hand 

object
Description (of 

left hand object)
P-101 is described in Req. 5.1

Req. 5.1 is a part of
Specification 

101

Req. 5.1
is a qualitative 

subtype of
requirement P-101 shall …

Table 39, A piece of information about an individual thing

Note  that  qualitative  information  is  abstracted  from one  or  more 
physical  representations  in  possibly  multiple  copies  or  versions. 
Such  qualitative  information  classifies  the  information  aspects  in 
those copies and versions. Therefore, it is regarded as a qualitative 
kind,  a  qualitative  subtype  of  the  general  concept  ‘information’. 
Therefore, a relation that expresses that some qualitative information 
is  about  an individual  thing is  a  relation between that  individual 
thing and a (qualitative) kind of thing.

8.4 Relations with implicit individual things

8.4.1 Classification of implied parts

In many models of assemblies the components are not all explicitly 
identified, so that the model consists of an incomplete composition 
hierarchy. Nevertheless, there is often a requirement to express that 
an assembly has one or more components of a particular kind. This 
means that there is a relation between the individual assembly and 
the kind that classifies one or more of its components. If it is known 
how  many  of  the  same  kind  of  component  it  has,  that  may  be 
specified by the  right  hand cardinalities.  An example  of  such an 
expression is:

statement: P-1 has a part that is classified as a bearing

Note that it is also possible to explicitly state that such a component 
is  not  part  of  the  assembly.  This  is  specified  by  stating  that  the 
intention of the expression is a denial. 
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For example, this is specified as follows:

denial: P-1 has a part that is classified as a bearing

Such relations are short-cut relations that need a verification on their 
consistency  with  possible  explicit  composition  specifications, 
because it might be that somewhere else in the model the component 
might be specified explicitly. Then it should be detected that these 
are  (probably)  the  same  components  and  duplication  should  be 
avoided.

The verification of the consistency of a  short-cut  relation and an 
explicit modeling of a part is enabled by the definition of the kind of 
relation.  That  definition  specifies  that  the  short-cut  relation  is 
equivalent  with  two  relations,  a  composition  relation  and  a 
classification relation. So, it may be that software determines that 
there is a part explicitly specified and that is classified conform the 
specification. For example as follows:

P-1 has as part B-1
B-1 is classified as a bearing

Then by inference the software can conclude that the first statement 
implies a part, let us call it E-1. Then it can be recorded that the 
short-cut  relation  is  equivalent  to  the  pair  of  detailed  relations, 
because apparently E-1 equals B-1.
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9 Hierarchical relations between kinds of 
things

Relations between kinds of things can be recursive or non-recursive. 
A non-recursive relation, also called a hierarchical relation, is a kind 
of relation for which by definition holds that a concept upstream in a 
chain  of  such  relations  may  not  appear  also  downstream in  that 
chain.  Non-recursive  kinds  of  relations  automatically  result  in 
hierarchical  networks  or  tree-shaped  networks.  A  hierarchical 
relation relates a wider concept to a narrower concept,  where the 
wider concept is higher in the hierarchy than the narrower concept. 
There are various subtypes of hierarchical relations as is illustrated 
in Figure 72.

Figure 72, Specialization relation and its subtypes

Those subtypes are discussed in the following paragraphs.

9.1 Specialization relations - Taxonomies
The  most  important  kind  of  hierarchical  relation  is  the  subtype-
supertype  relation  (1146),  which  is  also  called  a  specialization 
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relation, whereas its inverse is called: a generalization relation. This 
kind of relation specifies that a concept is by definition a subtype of 
another concept. A specialization relation specifies that the subtype 
kind has additional constraints as criteria for membership than the 
supertype  kind;  and  each  member  of  the  subtype  kind  is  also  a 
member  of  the  supertype  kind.  This  implies  that  a  subtype  kind 
inherits all knowledge that is valid for its supertype kind(s), because 
every  assertion  that  is  true  for  a  supertype  is  also  true  for  its 
subtypes. Formally defined: 

A <is a kind of> B if and only if for all x, 
if x <is classified as a> A, then x <is classified as a> B.

A specialization relation is  transitive and  antisymmetric. Transitive 
means that a relation of this type between two concepts implies that 
such a relation is also applicable between kinds of things that are 
indirectly related in a chain of relations of this type. This means that 
explicit  specification  of  indirect  relations  is  superfluous. 
Antisymmetric means: if concept A is a subtype of concept B, then 
B is not a subtype of A.

A specialization relation can be denoted by various phrases, such as 
<is a specialization of> or by one of its synonyms: <is a kind of>, 
<is  a  subtype of>,  <is  a  subclass  of> or  by one of  their  inverse 
phrases, such as <is a generalization of> or <is a supertype of>. 

A chain of  concepts  or  hierarchical  network of  concepts  that  are 
related by relations of this kind is called a taxonomy.

Subtype-supertype hierarchies or taxonomies can be defined for any 
category of concepts. Thus there are 

o taxonomies of kinds of physical objects in various domains, 

o taxonomies of kinds of aspects, such as properties & qualities,

o taxonomies of kinds of roles of physical objects, 

o taxonomies of kinds of roles of aspects, 

o taxonomies of kinds of relations, 

o taxonomies of kinds of occurrences and correlations, etc. 
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A consistent  collection  of  taxonomies  in  various  domains  should 
form one integrated taxonomy, of which all concepts are subtypes of 
the generic concept ‘anything’. 

9.1.1 Subtypes by distinguishing aspect values
Subtypes  of  a  particular  supertype  have  always  an  additional 
constraint  on  an  aspect  or  on  a  composition  for  which  their 
supertype has flexibility.

This is illustrated in Figure 73. 

The supertype concept has flexibility on a conceptual aspect.  For 
example the concept may have flexibility on its diameter. However 
the subtypes have less flexibility. For example each of them may 
have  a  defined  diameter.  The  various  subtypes  thus  have  by 
definition as aspects a different qualitative aspect, such as a distinct 
diameter. For example, the supertype concept bolt has subtypes with 
various thread diameters, such as a diameter of 6 mm, 8 mm, 10 
mm, etc. respectively. 
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9.1.2 Subtypes by distinguishing components
Figure  74 illustrates  that  there  can  be  subtypes  that  have  by 
definition  different  kinds  of  components  as  parts  or  they  can  by 
definition be without a component of a particular kind. 

Figure 74, Subtypes by presence or absence of 
a kind of component

For  example  the  supertype  engine  may have  three  subtypes:  one 
with a turbo type A, one with a turbo type B and a third subtype 
without a turbo.

9.1.3 Families of subtypes
The subtypes that have different ‘solutions’ or values for the same 
kind  of  aspect  (conceptual  aspect)  or  have  different  kinds  of 
component  physical  objects,  together  form a  family  of  subtypes. 
Those  different  solutions  are  usually  mutually  exclusive,  which 
implies that an individual thing can only be classified by one kind of 
a  particular  family  at  the  same time.  The  criterion  by  which  the 
subtypes in a family are distinguished is called the distinguishing 
aspect or distinguishing part and is also called its discriminator. 

Note that the family of subtypes can be determined by logic inference, so 
that it is not necessary to explicitly define the collection of subtypes in a 
family.

A concept may have multiple families of subtypes, each with its own 
distinguishing aspect or component. For example, the concept bolt 
has  not  only  subtypes  that  have  as  distinguishing  aspect  their 
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diameter, but also subtypes by material of construction with values: 
stainless  steel,  galvanized  carbon  steel,  copper,  etc.  and  also 
subtypes  with  a  distinguishing  kind  of  component,  being  a 
hexagonal head, a cylindrical head, etc. Thus the supertype (bolt) 
has  flexibility  in  all  three  aspects.  The  family  of  subtypes  by 
material  of  construction  are  stainless  steel  bolt,  galvanized  bolt, 
copper bolt, etc., each of which have by definition a fixed value as 
its material of construction, but still have flexibility in their diameter 
and head type.

We can also define further subtypes that have multiple fixed values 
for various distinguishing aspects or parts. For example, a ‘6 mm, 
stainless steel,  hexagonal head bolt’  can be defined as a separate 
kind  of  bolt.  Such  sub-sub-types  have  multiple  supertypes  (three 
‘parent’  kinds).  The  latter  implies  that  such  subtypes  inherit 
characteristics of all their supertypes.

Individual  things  may  be  classified  multiple  times  as  being  a 
member of multiple kinds, belonging to different families, but they 
may also be classified once as being a member of a sub-sub-type. 
For example:

Collection B1
is a collection of which 

each element classified as a

6 mm, stainless 
steel, hexagonal 

head bolt

9.2 Qualitative aspects
Kinds  of  aspects  can  be  distinguished  in  conceptual  aspects  and 
qualitative  aspects.  Conceptual  aspects  are  aspects  that  have  no 
quality or value. Qualitative aspects are aspects of which the size or 
magnitude or severity is qualified or quantified by a fixed value or 
by a range. For example, concepts such as red, toxic, short, ‘5 mm’ 
and ‘10-20 degC’ are qualitative aspects that are qualifications of the 
concepts color, toxicity, length and temperature range. The latter are 
(generic) conceptual aspects that are unqualified.

The  kind  of  relation  that  specifies  that  a  qualitative  aspect  is  a 
qualitative subtype of a conceptual aspect is called a qualification 
relation, which is denoted by the phrase <is a qualitative subtype of> 
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(1726).  Note  that  the  qualification  relation  is  a  subtype  of  the 
specialization relation. 

Examples  of  relations  between conceptual  aspects  and qualitative 
aspects are expressed as follows:

red is a qualitative subtype of color
toxic is a qualitative subtype of toxicity
5 mm is a qualitative subtype of distance
etc.

9.3 Types of physical objects
Kinds of physical objects can be distinguished in generic kinds and 
types  of  physical  objects.  A type of  physical  object  is  a  kind of 
which a number of its aspects have by definition a fixed value. A 
relation between a type of physical object and its generic supertype 
can be specified by using the qualification relation as well.

An  example  of  a  relation  between  a  type  of  physical  object 
(qualitative physical object) and its generic supertype is:

M6 bolt is a qualitative subtype of bolt

The specification that  a  particular  type of  physical  object  has  by 
definition  particular  aspect  values  may  be  given  in  a  textual 
definition that is only meant for human interpretation (as described 
in par. 5.8) or may be expressed in a definition model (as described 
in par. 10).

9.4 Manufacturer’s models and standard types
Further  subtypes  of  types  of  physical  objects  are  manufacturer’s 
models or catalogue items that are denoted by a model identifier (for 
a standard configuration and shape) and possibly by a standard size.

The kind of relation that can be used to specify a relation between 
such a manufacturer’s model and a higher level concept or type can 
be denoted by the phrase <is a model of>. This kind of relation is a 
further subtype of the specialization relation (and of the qualification 
relation). For example:
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Volvo S40 is a model of car
Siwamat 6140 is a model of washing machine

The  manufacturer’s  models  and  standard  types  and  sizes  are 
typically specified in quite some detail.  However,  not all  of their 
aspects need to have fixed values, and not all of their components 
are always fully defined, because various options may still be open. 
The detailed specification of a manufacturer’s model by be given in 
a textual description (see par. 5.8) or in an explicit definition model 
(see par  10), or as a reference to an identified document (see par. 
5.9).
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9.5 Quantification of quantitative values on a scale
A special case of qualitative aspects are quantitative aspects, which 
are aspect values (concepts) which magnitude or size can be defined 
by a relation with a numeric value on a scale. Note that these are not 
individual aspects, but ‘standard values’, such as allowed values that 
might be defined by a property range or might be listed in pick lists. 
(Quantification of individual aspects is discussed in par.  8.1.5). An 
example of a particular length or distance is the concept ‘300 mm’, 
which is  a particular qualitative value that  can be defined by it’s 
quantification  as  being  equal  to  the  number  300 on a  millimeter 
scale. Such a definition is then expressed as follows:

300 mm is a qualitative subtype of distance

300 mm
is by definition quantified on 

scale as equal to
300 mm
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The model that is the basis for this example is illustrated in the upper 
part of Figure 75. 

Figure 75, Quantification of quantitative aspects

In  Figure 75 a relation, such as R-1, is a conceptual quantification 
relation (1791) between a quantitative aspect (5901) and (usually) a 
number  (910132)  (but  in  general  a  mathematical  space  (2040)), 
whereas R-1 is also qualified as a ‘quantification on scale’ (5683) 
kind of relation. In other words, the relation R-1 is qualified in two 
ways, first as a quantification that is using a particular scale or unit 
of  measure.  The  unit  of  measure  is  made  explicit  by  a  second 
qualification  of  R-1  as  a  quantification  on  some particular  scale, 
such as a millimeter scale. 
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In tabular form this is expressed as follows:

R-1 is qualified as a ‘can be quantified by a’ relation
R-1 is qualified as a ‘mm’ (scale) relation

Note 1: The scale ‘mm’ is a kind of relation, because it qualifies the 
way in which a property is related to numeric values.

Note  2:  Both  relations,  ‘can  be  qualified  by  a’  and  ‘mm’,  are 
conceptual correlations, because they relate kinds of aspects.  
(Note that qualitative aspects, such as ‘300 mm’ and ‘300’ as well as 
‘mm’, are subtypes of kind of thing). 

For example,  the quantification relation between the length value 
‘300 mm’ and the mathematical concept ‘300’ is a relation that is 
qualified by a unit of measure, being ‘mm’. Such a unit of measure 
or scale is a particular (qualitative) method that is a mapping relation 
between an input (a particular length) and an output (a particular 
number) of the method. Therefore a scale or unit of measure is a 
kind of relation. 

Scales are standardized and included in the Dictionary. They form 
their own hierarchy as illustrated in Figure 76.

Figure 76, Scales and units of measure

It can also be predefined in a knowledge base which subtype of scale 
is  (by  definition)  intended  for  quantification  of  which  kind  of 
property. 
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For example:

length scale is by definition a scale for a distance

The relation between a quantitative aspect and a number does not 
need to be an equality relation, it might also be specified by some 
kind  of  inequality  relation,  Therefore  there  are  subtype  kinds  of 
relations defined that enable to express requirements that the value 
shall be greater than (or equal to) and/or less than (or equal to) some 
value. Furthermore, such expressions may not specify a possibility 
or  a  requirement,  but  something  that  is  by  definition  the  case. 
Therefore  further  subtypes  are  defined  for  the  expression  of 
definitions (which are not shown in  Figure 75). The latter kinds of 
relations can be used for example to define the property range ‘2-5 
mm’ as follows: 

Name of left 
hand object

Name of kind of relation
Name of right 
hand object

UoM

2-5 mm is a qualitative subtype of property range

2-5 mm
is by definition quantified on 

scale as greater than or equal to
2 mm

2-5 mm
is by definition quantified on 
scale as less than or equal to

5 mm

A property range is  not  necessarily defined as being bounded by 
numeric values on a scale. It can also be defined as being bounded 
by property values (qualitative aspect). In those cases the boundaries 
are defined by another kind of relation, being a relation between a 
qualitative  range  and  a  qualitative  value,  which  is  a  conceptual 
correlation between aspects, because both related things are kinds. 
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This is depicted in Figure 77.

Figure 77, Definition of the boundaries of a qualitative range

The use of  these kinds of  relations is  illustrated in the following 
example:

Name of left 
hand object

Name of kind of relation
Name of right 
hand object

2-5 mm is a qualitative subtype of property range
2-5 mm has by definition as lower boundary 2 mm
2-5 mm has by definition as upper boundary 5 mm

Numeric ranges differ from property ranges, because they are not 
quantified on a scale. However, the definition of numeric ranges is a 
relation between quantitative values, which is a subtype of a relation 
between  qualitative  values.  Therefore,  such  definitions  can  be 
expressed by using the same kinds of relations as above.

For example the range ‘20-30’ might be defined as follows:

Name of left 
hand object

Name of kind of relation
Name of right 
hand object

20-30 is a qualitative subtype of
numeric 

range
20-30 has by definition as lower boundary 20
20-30 has by definition as upper boundary 30
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Intrinsic aspects are aspects that are by definition possessed by a 
particular kind of object. Therefore, usually their name includes the 
name of a kind of physical object. For example, ‘lock position’ or 
‘pipe diameter’. Allowed values for such kinds of intrinsic aspects 
are often defined by explicitly specifying discrete optional values. 
For example, the allowed values for the position of a lock might be 
specified as ‘open’ or ‘closed’. That can be specified as follows:

Name of left 
hand object

Name of kind of relation
Name of right 
hand object

lock position can have as option open
lock position can have as option closed

The general model for such specifications is given in Figure 78.

Figure 78, Specification of options for kinds of intrinsic aspects

Another way of specifying such discrete allowed values is by first 
creating  a  collection  of  qualitative  aspects,  also  called  an 
‘enumerated list  of values’,  and the specifying that  some kind of 
intrinsic aspect is related to that collection. For example:

lock position shall be one of the allowed lock positions

The kinds of relations that are required to define such a collection are 
described in chapter 11.
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10 Conceptual relations between things of 
specified kinds

The  Gellish  allows  expressing  what  is  true,  but  also  allows 
expressing what is untrue or is fantasy and what can not be the case 
in a normal world. As such the language definition does not specify 
constraints  on  what  is  possible  or  not.  Nevertheless,  the  Gellish 
definition includes constraints that specify what things are. It also 
enables  verifying  the  consistency  of  expressions.  Furthermore, 
Gellish  can  be  used  for  expressing  explicitly  what  is  known  as 
possibilities. Such knowledge about possibilities can be expressed 
by using subtypes of the generic possibility relation, also called a 
‘conceptual relation between things of specified kinds’ (4698). Such 
a  relation  expresses  that  relations  of  the  specified  kind  between 
things of the specified kinds are known to be possible. Thus such a 
subtype relation between kinds of things expresses knowledge about 
possibilities for individual things of particular kinds, i.e. what can be 
the case. If something is a requirement, so that it shall be the case in 
a  particular  context,  than  it  must  necessarily  be  a  possibility. 
Therefor, requirement relations are subtypes of possibility relations. 
If some relation expresses what is by definition the case for things of 
specified kinds, then such a relation shall  and can be the case as 
well. Therefor, defining relations are further subtypes of requirement 
relations.  These  kinds  of  relations  are  all  called  ‘conceptual 
relations’ because they specify in concept (in principle) what can, 
shall be or is the case for individual things of the specified kinds. 
This  means  that  in  principle  relations  of  such kinds  can be  used 
either to derive relations between individual things of such kinds, or 
they  can  be  used  to  verify  whether  relations  between  individual 
things  conform  to  the  specified  possibilities,  requirements  or 
definitions. 

It should be noted that if something is not declared as a possibility, it 
nevertheless may be possible. However, a party may apply the rule 
that individual relations may only be created after the possibility of 
such a relation is explicitly specified.
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Figure 79 illustrates the top of this branch of the hierarchy of kinds 
of  relations  that  are  subtype  of  the  generic  possibility  relation 
(4698). 

Figure 79, Relations for the expression of knowledge, 
requirements and definitions

Those subtypes specify what can be the case, i.e. possibilities, what 
shall be the case, i.e. requirements or what is required to be the case 
(in  a  particular  context)  and  what  is  by  definition  the  case,  i.e. 
definitions.

10.1 Modeling possibilities, requirements and 
definitions

10.1.1 Knowledge about possibilities
Knowledge  expressions  typically  express  possibilities.  In  other 
words,  they  express  what  can  be  the  case.  Such  possibilities  are 
modeled using subtypes of a (generic) possibility relation between 
kinds of things. The generic possibility relation can be of any order 
and therefor it has as subtype a second order possibility relation, also 
called  a  binary  possibility  relation.  Further  subtypes  of  kind  of 
binary possibility relation can be expressed by using subtypes of a 
binary  generic  possibility  relations.  Phrases  that  denote  such 
subtypes typically comprise fragments such as <can be ... a> or <can 
have ... a>.
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For example, the following kinds of relations are intended to express 
knowledge about possibilities:

pump can have as part a impeller
impeller can have as aspect a diameter

Chains  or  networks  of  relations  of  such  kinds  form  knowledge 
models.

A generic possibility kind of relation defines that a relation of such a 
kind means that in practice such a relation is possible for at least 
some of the things of the related kinds. For example, at least some 
pumps can have an impeller. However, by default the relation does 
not specify that every pump can have an impeller. The relation does 
also  not  specify  how  many  impellers  a  pump  can  have 
simultaneously or during its life. If any of those options is limited, 
then  that  constraint  can  be  added  by  specifying  cardinality 
constraints. Simultaneous cardinality constraints limit the number of 
individual  things  of  a  specified  kind  that  are  simultaneously 
minimally  and  maximally  allowed  to  be  related  to  one  related 
individual thing of the other kind. Cardinalities are further discussed 
in par. 13 and 13.4.3.

10.1.2 Requirements
A requirements kind of relation specifies that relations are required 
between individual things of a kind that satisfies the requirement. 
This  means  that  in  practice  such  a  relation  is  required  by  the 
requiring party for any of the individual things of the related kinds. 
Requirements  shall  be  realized  in  practice  as  well  as  being 
incorporated in the information model that describes the realization. 
Realizations of possibilities and requirements are further discussed 
in par. 10.5.

When something is required for a particular kind of thing it implies 
that it is also possible for at least some of the things of such a kind 
(at least in the opinion of the requirer, although a requirement may 
be in conflict  with the possibilities).  Therefore, kinds of relations 
that express requirements are defined as subtypes of relations that 
express possibilities about kinds of things.
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A party or standard that formulates a requirement has a role as the 
validity context within which the requirement holds and is recorded 
as a contextual fact in the appropriate Gellish expression.

Phrases that denote requirements typically comprise fragments such 
as <shall be ... a> or <shall have ... a>.

10.1.3 Definitions
Definitions  of  kinds  of  things  are  statements  about  what  is  by 
definition the case for  those kinds of  things.  If  for  an individual 
thing it is specified that something is not the case, whereas for things 
of a particular kind it is declared that something is by definition the 
case, and  then that means that the individual thing is not of that 
kind. In other words, the things that are by definition the case are 
necessary conditions for being a member of the defined kind. We 
distinguish  between  textual  definitions  and  modeled  definitions. 
Textual  definitions  that  are  expressed  as  textual  information  are 
discussed  elsewhere.  Here  we  discuss  only  modelled  definitions, 
which are definitions that are expressed as definitional relations. If a 
definition for a kind of thing is completely modeled, then satisfying 
all definitional relations is sufficient for determining that something 
is a member of the specified kind. However, it should be noted that 
in  many  applications,  especially  in  design  application,  individual 
things do not (or not yet) have aspects on the basis of which they 
might  be  classified by  a  kind,  but  it  is  the  other  way  around: 
(imaginary) individual things are declared to be classified by a kind 
in order to specify that the definition of the kind also applies to the 
individual thing. Thus, in such cases the aspects of the individual 
things are derived from the definitions of the kinds.

Definitional  relations  that  are  necessary  conditions  for  being 
member  of  a  kind  should  be  distinguished  from  things  that  are 
normally  the  case  for  well-formed  things  of  the  kind.  This 
encyclopedic  knowledge  about  well  formed  things  is  usually 
modeled as a  requirement in the context  of  some norm for well-
formed things of that kind.

218



Kinds of relations that  express what is  by definition the case are 
defined as  subtypes  of  requirement  relations,  because  what  is  by 
definition the case is also required and is also possible.

Phrases that denote definitions typically comprise fragments such as 
<is by definition ... a> or <has by definition ... a>.

10.2 Compositions of things of particular kinds
A  conceptual  composition  relation  between  things  of  particular 
kinds (1261) expresses a possibility which is the knowledge that an 
individual thing of a particular kind (possibly) can have as part one 
or more other things of a particular kind. Such a statement is usually 
abbreviated by stating that 

kind A <can have as part a> kind B.

Such a statement implies that the inverse is also true:

kind B <can be a part of a> kind A.

The minimum and maximum number of individual things of kind B 
that can simultaneously be a part of one individual thing of kind A 
can be  specified by two simultaneous cardinality  constraints.  For 
example the constraints 0 and n, expressed as [0, n]. Normally one 
part of kind B can simultaneously be the part of only zero or one 
whole  of  kind  A.  This  can  be  specified  by  the  other  cardinality 
constraints, for example as [0, 1]. Cardinality constraints in general 
are discussed in par. 13.4.3.

A possibility,  such as specified above, can be realized by one or 
more  individual  realities  that  can  be  modeled  by  using  the 
counterpart composition relation (1260). Such a relation expresses 
that 

some individual thing <is a part of> some other individual thing 
(as is discussed in par. 7.1). 

Such knowledge presents an option that can typically be used during 
design or construction of assemblies of individual things or when 
complex projects, activities and processes are composed.
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Figure  80 illustrates  that  a  possible  realization  relation  (5091) 
between a possibility (a possible composition relation) and a reality 
(a  real  composition  relation)  is  modeled  as  a  relation  between 
relations.

Figure 80, Possible composition of things of specified kinds

The figure also shows that the possibility is defined as a subtype of a 
conceptual relation between individual things (1231), which relates 
two  different  individual  things  (730067).  This  implies  that  the 
composition relation can also be applied for possible composition 
relations between all the subtypes of individual thing. For example it 
can  be  applied  for  possible  compositions  of  physical  objects  of 
various kinds or for possible compositions of occurrences of various 
kinds, because they are subtypes of the concept ‘individual thing’.  

Furthermore, what holds for a possible relation (1261) also holds for 
its  subtypes:  a  requirement  for  one or  more  composition relation 
(4989)  and  a  composition  relation  that  is  by  definition  the  case 
between a whole and a part individual thing of the specified kinds 
(5519).  Usually a requirement and a definition specify that  every 
whole of a specified kind shall  have, or by definition has one or 
more things of a specified kind as parts. It may also specify that a 
part of a specified kind shall be or by definition is a part of a whole 
of  a  specified  kind.  The  precise  meaning  shall  be  indicated  by 
specifying  the  left  hand  and  right  hand  simultaneous  cardinality 
constraints.

There are various ways in which things can be composed, depending 
on  the  kind  of  connection  between  the  components,  if  any,  or 
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depending on the kind of component that is composed and the kind 
of role that  is  played by the component.  These different ways of 
composition  can  be  expressed  by  using  different  kinds  of 
composition relation. Figure 81 presents a number of such subtypes 
of the conceptual composition relation.

Figure 81, Subtypes of conceptual composition relation

The various subtypes of the conceptual composition relation have 
the following meaning:

o can have as element a 
specifies that  a collection of a specified kind can have things of a 
specified kind as elements, whereas the elements form a collection, in 
which  they  are  not  coherent,  although  the  elements  may  be  in  a 
sequence.
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o can be an organization for a
specifies  that  things  of  a  specified  kind  can  be  members  of  an 
organization of a specified kind.

o can have as feature a
specifies that a physical object of a specified kind can have a feature 
of a specified kind. A feature is an integral part of a whole and may 
have an undefined boundary with the rest of the whole. For example a 
rim or an integrated lifting lug that is casted in a body.

o can contain as route a
specifies  that  a  network  of  a  specified  kind  contains  a  route  of  a 
specified kind.

o can have as opening as
specifies that something of a specified kind can contain a hole of a 
specified kind.

o can have as assembled part a
specifies that a whole of a specified kind can have a part of a specified 
kind  that  is  assembled  in  the  whole.  It  implies  that  there  is  a 
connection relation between the part and one or more other parts of 
the same whole.
This kind of relation has the following subtypes:

o can have as desired part a
specifies  that  an  assembled  part  of  a  specified  kind  is  not  only 
possible, but also desired, which expresses a preference without being 
an obligation. Such a preference is always only valid in a particular 
validity context. The specification of a validity context is discussed in 
par. 13,

o can have as unnecessary part a
specifies that an assembled part of a specified kind is allowed, but not 
required within a particular validity context.

o can have as conditional part a
specifies that an assembled part of a specified kind is only possible 
under  a  particular  condition.  The  condition  may  be  specified  in  a 
conditional consequence relation (an if-then relation) as is discussed 
in par. 10.10.
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10.3 Aspects of things of particular kinds
A specification of the possibility that things of particular kinds can 
possess aspects of particular kinds can be expressed by using a kind 
of relation that specifies that an individual thing of a specified kind 
can possess and aspect of a specified kind. This kind of relation can 
be denoted by the following phrase:

<can have as aspect a>

When an individual thing possesses such an aspect in reality, that 
fact does not necessarily imply that an information model about the 
individual  things  also  includes  a  possession  relation  for  such  an 
aspect.  Therefore,  the  meaning  of  such  a  statement  is  that  it  is 
possible in reality and it  is also allowed in an information model 
about an individual thing of such a kind in order to reflect reality or 
to reflect an idea (an imaginary individual thing). 

Figure 82 presents this kind of relation with its supertypes and its 
most important subtypes.

Figure 82, Possible possession of aspects by things of a kind

The main subtypes of the <can have as aspect a> kind of relation are 
mentioned in Figure 82. They have the following meaning:

o shall have as aspect a
This specifies a requirement that any individual thing of a specified 
kind shall possess an aspect of a specified kind. This implies that a 
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thing of  such a kind in reality shall  possess such an aspect  and it  
implies that an information model about a possessor shall include a 
relation  with  such  an  aspect,  as  well  as  information  about  the 
qualitative or quantitative value of the aspect. In case of a quantitative 
value the model shall also include a relation with a scale that is used 
to determine the value. This seems trivial, but for a computer it is not 
trivial, as it implies that several binary relations need to be specified. 
For example, assume in a requirements model for roads in a particular 
context there appears the following expression of a requirement:

road shall have as aspect a width

Then  the  requirement  implies  for  any  individual  road  it  is 
required  to  specify  not  only  that  the  road  has  an  individual 
aspect  that  is  classified as  a  width,  but  also that  its  value is 
specified and if the value is a quantitative value that then the 
scale for that quantification is given.

Thus,  assume  that  an  information  model  contains  the 
expression:

B-23 is classified as a road

Then  the  requirement  implies  that  three  expressions  are 
required, similar to the following example:

B-23 has as aspect W-1
W-1 is classified as a width
W-1 has on scale a value equal to 5.20 m

o The  requirement  holds  within  a  particular  validity  context  (for 
validity context see par. 13.4.

o This subtype has the following further subtypes:

o has by definition as qualitative aspect
[or] is by definition qualified by
[or] is by definition
This  specifies  that  any possessor  of  a  specified  kind by definition 
possess an aspect that has a qualitative aspect of the specified value.

For example: 
- horizontal vessel <is by definition> horizontal.
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o is defined by possessing as aspect a
This specifies that a concept is defined by having a qualitative aspect 
(value) that is a qualitative subtype of the specified conceptual aspect. 
This implies that each individual thing of the specified kind has an 
aspect of the specified kind that is qualified by the same qualitative 
aspect (value).
For example: 
 - horizontal vessel <is defined by possessing as aspect a> orientation

Other kinds of expression can be used for specifying what the aspect 
values are allowed to be or by definition are.

10.3.1 Properties and qualities of things of particular kinds
Depending on the kind of aspect it is possible to use more dedicated 
subtypes  of  the  <can  have  as  aspect>  relation.  Some  of  such 
subtypes are presented in Figure 83.

Figure 83, Dedicated relations for possible kinds of aspects

The  distinction  between  the  subtypes  of  characteristic,  being 
(physical)  properties and  qualities and  their  further  subtypes  is 
discussed before in par 7.4.
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As in most other cases the kinds of relations about possibilities have 
their corresponding kinds of relations that express requirements and 
things that are by definition the case. 

Thus there are also kinds of relations, such as:

shall be made of 
is by definition made of

The kind of shape (or qualitative shape) of  physical  objects  of  a 
particular kind (or of a type or manufacturer’s model and size) is a 
special kind of quality. Shapes can be qualified by their qualitative 
value. For example as cylindrical shape, complex shape, etc. This 
can be used in expressions such as:

object type-1 shall have as shape a cylindrical shape
cylindrical vessel has by definition as shape a cylindrical shape

Shapes can be specified in further detail  by parametric geometric 
correlations (mathematical functions) or combinations of them. Such 
correlations  are  defined  in  coordinate  systems,  whereas  various 
dimensions of the shaped physical object and its parts or features 
play a role as parameter values in the correlations. 

10.3.2 Time aspects of states and occurrences of kinds
It may be specified that a state or an occurrence of a particular kind 
can  or  shall  take  place  within  a  particular  period  in  time.  For 
example it can be specified that any occurrence of a particular kind 
can or shall occur within a particular period of time. For example, it  
may be specified that any payment shall be within 30 days (from the 
date of issue of an invoice). Then the kind of occurrence is related to 
a qualitative duration. This can be expressed for example as follows:

payment shall occur within a period of 30 days

Note that the qualitative duration is a qualitative aspect, which value 
is  normally  specified  as  a  number  on  a  scale  (see  also  the 
quantification of individual aspects in par. 8.2).

It may also be specified that for any occurrence of a particular kind 
it is required that information is provided about the planned or actual 
period in time or date of occurrence (see Figure 84). 
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This mean that it is specified that such an occurrence shall take place 
within some period in time (which implies a  maximum duration) 
such as a month in time, or that is shall occur at some date. For 
example a requirement for information, such as:

project shall occur within a period of a month in time
delivery shall occur at a date

The above example requirement means that it is obligatory that it is 
specified for any project in which month it shall take place and for 
any delivery what its delivery date is or will be.

Figure 84, Relations for possible time aspects

Sometimes a  planned or  actual  creation date  or  revision date  for 
individual  things  is  recorded,  which  means  that  the  creation  or 
revision  process  is  completed  at  that  date,  although  the  process 
might have a longer duration than a day. It is possible to express a 
requirement  for  the recording of  such a  creation or  revision date 
about any object of a kind. Such a requirement is expressed as a 
relation between a kind of physical object and a kind of period in 
time. Such a relation is in fact a short-cut relation as it implies an 
occurrence (a creation or revision),  although that  occurrence may 
not be modeled explicitly. 
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Examples of the use of such expressions of requirements are:

connection shall be recorded to be created at a date
pump shall be recorded to be revised at a date

The time aspect to which a state, occurrence or physical object is 
related does not need to be the concept ‘date’. 

Other subtypes of time aspect are given in Figure 85.

Figure 85, Subtypes of time

A moment in time is indicated as a concept that is distinct from a 
period  in  time.  Nevertheless,  there  are  strong  arguments  for  the 
opinion  that  moment  with  zero  duration  do  not  exist  so  that  a 
moment in time is in fact a period in time with an unspecified short 
duration. We therefore use a pragmatic definition that a moment in 
time is defined by only one time value, without a specification of a 
duration. On the other hand, a period in time is defined (in principle) 
by two time values, either by a start value and a duration, or by a 
start  time value  and a  termination  time value.  For  example,  if  a 
moment in time is denoted by a second in time, then it is assumed 
that  the  occurrence  started  and  is  possibly  completed  within  the 
duration of that second.
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10.3.3 Roles and role players of particular kinds
The concept ‘role’ is an extrinsic aspect of a role player that depends 
on a relation in which the role player plays such a role. Thus the 
concept  role  is  a  subtype  of  aspect.  Subtypes  of  roles  are  for 
example  usage  and  application.  A  role  is  typically  played  by 
something in a relation to something else, during a certain period or 
during  the  whole  of  the  lifetime  of  the  role  player.  Figure  86 
presents some kinds of relations that classify relations between kinds 
of things and kinds of roles.

Figure 86, Kinds of roles played by kinds of things

A  <can  have  a  role  as  a>  relation  can  be  used  to  express  the 
knowledge that  any individual  thing of  a  specified kind can play 
roles  of  a  specified  kind,  without  specifying  in  which  kind  of 
relation that is the case. 

For example:

paint layer can have a role as a protector against corrosion
man can have a role as a father

Because  usage  and  application  are  subtypes  of  role,  there  are 
subtypes of <can have a role as a> such as <can be used as a> and 
<can be applied as a>.

Separately  it  is  possible  to  specify  that  for  binary  relations  of  a 
particular kind there are by definition (always) two particular kinds 
of  roles  involved.  For  example,  a  parentship  relation  between  a 
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father  and a  child  has  by  definition  as  first  role  a  father  and as 
second role a child. This can be specified as follows:

is a father of has by definition as first role a father
is a father of has by definition as second role a child

In other situations (in a particular context) it may be a requirement 
that roles of a particular kind shall be played by things of a particular 
kind, or the inverse, which specifies that things of a particular kind 
shall  play  a  role  of  a  particular  kind.  Note  that  a  requirement 
relations shall be accompanied by a validity context.

All the above kinds of relations may be accompanied by cardinality 
constraints.  For  example,  one man can have zero to  many father 
roles, whereas a (biological) father role can be the role of one man 
only. Thus

[1,1] man can have a role as [0,n] father

10.3.4 Aspect of parts of things of particular kinds
Sometimes it is specified that some part of a kind of physical object 
has an aspect of a particular kind, without specifying which part or 
which  kind  of  part  is  involved.  To  specify  such  knowledge  or 
requirement requires a relations between a kind of physical object 
and a  kind of  aspect,  whereas  the  aspect  is  not  an aspect  of  the 
physical object itself. Such a kind of relation is presented in Figure
87.

Figure 87, Kinds of aspects of a part of a kind of thing

A <can have a part with as aspect a> (5247) relation specifies that 
any individual physical object of a specified kind can have some part 
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that has an aspect of a specified kind. A relation of this kind implies 
that such an individual thing has an individual part, although that 
part may remain implicit, or may be specified explicitly in another 
expression. That implied part has an aspect of the specified kind. 
This kind of relation has as further subtype:

o can have a part with as function a
[or] can have a part with as role a (1301)
This specifies that any individual physical object of a specified kind 
can have a part that has a role of a specified kind. Such a role may be 
called  a  function  of  the  part.  However,  a  function  is  normally  an 
(intended) activity or process.

10.3.5 Definitions of kinds of intrinsic aspects
As discussed in par.  8.1.2, a kind of intrinsic aspect is a kind of 
aspect that by definition is possessed by a particular kind of things. 
The possessor is typically denoted by the fact that the name of the 
kind  of  intrinsic  aspect  includes  the  name of  a  kind  of  physical 
object that is the possessor. For example, the kind of intrinsic aspect 
‘pipe diameter’ includes the name ‘pipe’ in its  name. For human 
beings the intrinsic relation with a pipe can be interpreted from such 
a  name.  However,  for  computers  it  is  necessary  to  specify  that 
relation explicitly as decribed below. 

Such a kind of intrinsic aspect is not an ordinary aspect, but it is a 
role of an aspect, because it is a role that is played by an aspect in a 
‘possession  of  aspect’  relation  with  a  possessor  of  a  pre-defined 
kind. The definition of an intrinsic aspect can therefore be modeled 
by specifying not only a specialization relation with (a subtype of) 
role, but by specifying also two other relations: one relation with the 
kind of aspect that plays the role and the other relation with the kind 
of thing (physical object) that is by definition its possessor. Thus, for 
example:

pipe diameter is a kind of intrinsic aspect
pipe diameter is by definition an intrinsic aspect of a pipe
pipe diameter is by definition an intrinsic diameter
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10.4 Kinds of occurrences
10.4.1 Conceptual involvements in occurrences 
Kinds of things can be involved in particular kinds of roles in kinds 
of (higher order) relations to model the involvements e.g. in kinds of 
occurrences. Formal English should enable to specify the knowledge 
of  possibilities,  requirements  for  involvements  and  definitions  of 
kinds of occurrences that imply particular kinds of things that are 
involved. 

Conceptual involvements are presented in Figure 88.

Figure 88, Conceptual involvement in occurrences

To enable to express more precisely in which kind of role some kind 
of thing can be or shall be involved requires the use of subtypes of 
the <can be involved in a> relation. 
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A number of examples of such subtype are given in Figure 89.

Figure 89, Examples of subtypes of conceptual 
involvement relations

Additional subtypes are available in the upper ontology section of 
the Gellish language dictionary.

10.4.2 Conceptual sequences of occurrences
A  conceptual  sequence  of  occurrences  relation  is  defined  as  a 
relation between two concepts, the concept ‘occurrence’ in a role as 
conceptual temporal predecessor and the same concept ‘occurrence’ 
in  a  role  as  conceptual  temporal  successor.  In  other  words  that 
definition  specifies  the  knowledge  that  ‘an  occurrence  can  occur 
after another occurrence’. In general that statement can be expressed 
in Formal English as:

occurrence can occur after a occurrence

Figure 90 gives a graphical representation of that possible sequence 
relation.
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Figure 90, Example of a recursive relation

Although the predecessor and successor are the same concept, the 
definition of the kind of relation includes that the two roles may not 
be  played  by  the  same  individual  occurrence.  In  other  words  it 
specifies that an individual occurrence cannot occur before or after 
itself. 

Recursive relations

The <can occur after a> relation is a typical example of a recursive 
relation. A recursive relation relates a concept (a specified kind) to 
itself. In general relations between kinds of things may be recursive. 
However, their meaning is not really recursive, because a recursive 
relation means that an individual thing (instance) of the specified 
kind can be related to another individual thing of the same kind, but 
the individual thing cannot relate to itself.

The defined kind of relation <can occur after a> enables to make 
similar statements about relations between two different subtypes of 
occurrence. 

For example, the kind of relation can be used to specify:

stop of motor can occur after a start of motor
activity can occur after a activity

Note that the general definition of such kinds of relations does not 
put  constraints  on  the  related  kinds  of  things,  other  than  the 
specification that  they must be subtypes of the related kind.  This 
means that a stop can occur after another stop, etc. The definition 
does not even specify whether the related occurrences are about the 
same  or  about  different  things  (e.g.  the  stop  of  the  same  or  of 
another motor). If such constraints apply, then constraining relations 
shall  be specified between the roles,  as is  illustrated for relations 
between individual things.
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10.5 Realization of knowledge and requirements
Knowledge models and requirements models about kinds of things 
can  be  used  basically  in  two  ways:  as  a  basis  for  creating 
information  models  about  individual  things  and  as  a  basis  for 
verifying whether individual things satisfy the requirements that are 
expressed in requirements models.

The way in which knowledge models about possibilities in general 
can be used for creating expressions of ideas that form information 
models about individual things is illustrated below.

Assume  that  a  data  sheet  of  a  centrifugal  pump  expresses  a 
requirement for three impeller diameters, as given in Table 40.

Impeller 
diam.

Minimum   mm

Actual   mm

Maximum   mm

Table 40, Expression of requirements on a data sheet

The  requirements  in  Table  40 can  be  transformed  into  modeled 
requirements as follows. 

Name of left 
hand object

Name of kind of relation
Name of right hand 

object
centrifugal pump shall have as part a impeller

impeller shall have as aspect a minimum diameter
impeller shall have as aspect a actual diameter
impeller shall have as aspect a maximum diameter
diameter shall be quantified on scale mm

Table 41, Requirements for impeller diameters

The first line in Table 41 expresses that any individual thing that is 
classified as a centrifugal pump shall have a part that is classified as 
an impeller. Such a requirement is unconditional for all individual 
things that are classified by the specified kind. Thus in this example 
it  applies  for  all  centrifugal  pumps.  However,  from  a  semantic 
modeling perspective there is a condition. That condition is: ‘there is 
an individual thing that is classified as a centrifugal pump’. If that 
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condition is satisfied, then it has as consequence that the requirement 
holds for the classified individual thing. Therefore we call such a 
requirement a quasi-unconditional requirement. This is illustrated in 
Figure 91.

Figure 91, Realization/fulfillment of a requirement

In  Figure 91 the requirement is presented at the right hand side of 
the figure. The condition is modeled as an ‘if-then-relation’ that has 
as component a ‘has as condition’ relation with the condition, which 
is the existence of a particular kind of relation (in the example the 
existence of a classification as a centrifugal pump). If that condition 
is  satisfied  then  it  has  as  a  consequence  that  the  requirement  is 
applicable  for  the  classified  individual  thing.  The  latter  logically 
means  that  there  shall  be  a  ‘has  a  part’  relation  between  the 
classified  individual  thing  and another  individual  thing  and there 
shall  be an ‘is  classified as a’  relation between that  part  and the 
concept impeller. Thus software should be able to deduce what kind 
of  relation  should  result  from  a  particular  kind  of  requirement 
relation.  The  upper  ontology  of  Formal  English  therefore  should 
(and  does)  specify  what  kinds  of  relations  satisfy  what  kinds  of 
requirement relations. Some examples are given in Table 42.
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Name of 
left hand object

Name of 
kind of relation

Name of 
right hand 

object
shall have as part a can be realized by a has as part

shall have as aspect a can be realized by a has as aspect

Table 42, Realization of requirements

10.5.1 Design proposals
Based on requirements models as described above it is possible for 
software to create design proposals.

For  example,  the  above  logic  holds  for  the  satisfaction  of 
requirements such as the requirement that an impeller shall have as 
aspect a diameter.

Assume  that,  given  the  above  requirements  model,  there  is  an 
individual, called P-1 that is classified as a centrifugal pump (or as 
one of its subtypes), as follows:

P-1 is classified as a centrifugal pump

Then, based on the requirements that are expressed in Table 41 it is 
possible that (design) software would make a proposal for a piece of 
an information model for the individual P-1 as given in Table 43.

P-1 has as part I-1
I-1 has aspect D-1
I-1 is classified as a impeller
D-1 is classified as a minimum diameter
D-1 has on scale a value equal to 500 mm

Table 43, Proposal derived from requirements

The proposal by software should enable a user to specify names for 
the  new  things  (e.g.  I-1  and  D-1)  and  for  values,  such  as  500, 
whereas the software could allocate UIDs for the new things.
Such a proposal can be presented to a user in various forms and lay-
outs. 
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For example, it may be presented on a data sheet as follows: 

centrifugal pump  P-1
impeller
minimum diameter   500 mm

This  presentation  leaves  the  individual  impeller  and  diameter 
nameless  and thus without  an identifier  and it  uses  the layout  to 
suggest relations of various kinds, such as the (correct) suggestion 
that something that is called P-1 is classified as a centrifugal pump 
and that some unnamed impeller is part of that pump and that the 
diameter is possessed by the impeller (and not by the pump). 

Similarly  to  derivation  of  design  proposals  from  requirements, 
software can also derive information models about individual things 
from knowledge models.  This  follows from the  fact  that  what  is 
required  should  be  possible.  Possibilities  are  prerequisites  of 
requirements. Therefore kinds of relations that express requirements 
(being denoted by ‘shall have…’ relations) are subtypes of relations 
that express possibilities (denoted by ‘can have…’ relations). This 
means that the upper ontology of a formalized language should (and 
in formal English it actually does) specify what particular kinds of 
possibilities in general can be realized by individual ideas of related 
particular kinds. Such possible realizations are formally specified in 
the Upper Ontology section of the formal dictionary. 

This is expressed for example as follows:

Name of 
left hand object

Name of 
kind of relation 

Name of 
right hand object

can have as part a can be realized by a has as part
can have as aspect a can be realized by a has as aspect

Table 44, Realization of possibilities

By inheritance follows that the requirements relations (as expressed 
in Table 42) are also satisfied by the kinds of relations that are given 
on the right hand side of Table 44.
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10.5.2 Verification of requirements
Knowledge  can  also  be  used  for  verifying  whether  a  given 
information  model  about  an  individual  thing  of  a  specified  kind 
satisfies  requirements  as  expressed  in  a  requirements  model  or 
whether  it  uses  the  knowledge  about  possibilities  for  individual 
things of such a kind.

The procedure to execute such a verification is the inverse process of 
making a proposal.  For example,  for an information model of an 
individual centrifugal pump P-2 it can be verified whether it has one 
or more parts that are classified as an impeller and whether those 
parts have specified minimum diameters, etc.

10.6 Properties and inheritance
Individual  physical  objects  can  have  many  aspects.  Aspects  of 
individual physical objects are defined in Formal English as separate 
(although dependent) individual things. Such individual aspects are 
related to their possessor by a possession relation. In order to define 
what they are, they shall be classified and qualified (or quantified) 
explicitly.

For kinds of physical objects it can be specified that objects of such 
a kind can have aspects of particular kinds. This kind of relation is 
defined  such  that  it  reflects  the  reality  an  object  of  that  kind  in 
reality  (possibly  but  not  necessarily)  has  such  an  aspect  with  a 
particular value, but that that value might not be recorded. If it is 
specified that objects of that kind (in a particular context) shall have 
such an aspect, then it is meant that objects of that kind not only 
have aspects of that kind, but also that the values shall be recorded.

Ideas  that  are  expressed  as  relations  between  kinds  of  things 
(knowledge, requirements and definitions) are inherited by subtypes 
of the related things.

Consider  for  example  the  question  “does  P-1  have  a  diameter?”. 
This does mean: is there an individual aspect that is possessed by 
P-1, whereas the aspect is classified as a diameter  and of which its 
value is recorded?
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A database may for example contain relations that expresses that a 
pipe can have a diameter. This can be expressed as is illustrated on 
the first line of Table 45.

Table 45, Example of an inherited idea

All  the  subtypes  of  pipe,  that  have  a  specialization  relation  with 
‘pipe’, inherit this idea! (Software that implements Formal English 
shall ensure that this is the case). In other words all kinds of things 
that are subtypes in the specialization hierarchy of “pipe” inherit that 
they can have a diameter. On the basis of the third line in the above 
table  (which  is  a  statement  that  is  typically  contained  in  the 
taxonomic dictionary) a tube is a specialization (kind or subtype) of 
pipe. As the second line specifies that P-1 is classified as a tube, the 
inheritance rule implies that also object P-1 can have a diameter. 
These  ideas  do not  imply a  requirement  for  recording a  numeric 
value according to a mass scale. 

There are two options to make use of the first three lines:

1. When  an  individual  object  (such  as  P-1)  is  created  and 
classified, then software can propose to give it  a property, 
such as a diameter, whereas the property can be allocated to 
the item by specifying a <has as aspect> relation.

2. When  individual  objects  are  classified  and  they  have 
properties, then those properties can be  verified against the 
kinds of properties of the kinds of things that are defined and 
inherited from the specialization hierarchy of kinds of things.
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101 3 201 7
Left hand 

object name
Name of

kind of relation
Right hand 
object name

UoM

pipe can have as aspect a diameter
P-1 is classified as a tube
tube is a specialization of pipe
P-1 has as aspect Diameter of P-1

Diameter of P-1 is classified as a diameter

Diameter of P-1
has on scale a value 

equal to
20 mm



If the first line in  Table 45 would have used the kind of relation 
<shall have as aspect a>, then only the last three lines would satisfy 
that requirement, because the classification and the quantification of 
the diameter shall be as required.

10.7 Explicit modeling of roles
Roles that are required and played can be made explicit by replacing 
one line in an Expression table by four lines: two lines describe the 
roles  required  by  the  relation  and  the  other  two  describe  which 
objects play those roles. 

For example, the concept of ‘classification of an individual thing’ 
(by a kind of thing) is defined in the Upper Ontology section of the 
Gellish Dictionary. That concept, which is represented by the phrase 
<is classified as a>, is defined as being a kind of relation between an 
individual thing and a kind of thing and by four additional defining 
elementary ideas that specify which kinds of roles are by definition 
involved in such a relation and which kinds of role players can play 
a role of such a kind. Thus the definition consists of five lines in an 
Expression table as is illustrated in Table 46.

101 1 3 15 201

Name of left 
hand object

UID of 
idea

Name of kind of 
relation

UID of right 
hand object 
(UID of kind 

role)

Name of right hand 
object (name of kind 

of role)

is classified as a 1.007.363 is a specialization of 4.719 is related to a

is classified as a 1.003.840
has by definition as 

first role a
3.821

classified individual 
thing

is classified as a 1.003.573
has by definition as 

second role a
3.822

classifier for 
individual thing

individual thing 1.001.423 can have a role as a 3.821
classified individual 

thing

kind 1.001.215 can have a role as a 3.822
classifier for 

individual thing

Table 46, Elementary ideas about roles in relations

Note 1: The right hand objects on the last four lines in Table 46 are 
kinds of roles. Therefore, they are defined in the Gellish Dictionary 
as  concepts  and  thus  they  are  part  of  the  overall  specialization 
hierarchy  of  concepts,  with  their  own  branch  with  a  hierarchy 
(taxonomy) of kinds of roles. 
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Note 2: The fourth line in Table 46 defines that an individual thing 
(i.e. a member of the concept ‘individual thing’) can have a role as 
‘classified individual thing’, whereas the last line defines that a kind 
(i.e. a member of the concept ‘kind’, which is ‘individual thing’ or 
one of its subtypes) can have a role as a ‘classifier for an individual 
thing’.  This  is  compliant  with  the  assertion  that  the  relation  <is 
classified as a> is defined as being a subtype of ‘relation between an 
individual thing and a kind of thing’, as is specified on the first line.

Kinds  of  roles  can  also  be  made  explicit  by  mentioning  them 
explicitly as part of expressions. This is illustrated in Table 47.

101 1 3 15 201

Name of left 
hand object

Name of left 
hand (kind of) 

role

Name of kind of 
relation

Name of right 
hand (kind of) 

role

Name of right 
hand object 

D-1 classified D-1 is classified as a
classifier of 

D-1
door

door
possessing 

door
can have as aspect 

a
height of a door height

individual 
thing

conceptual 
player of a role

can have a role as 
a

conceptually 
played role

classified 
individual thing

Table 47, Explicit roles in expressions

Note that on a high level the kinds of roles that are involved in kinds 
of  relations  are  explicitly  defined  it  the  upper  ontology  of  the 
language  definition.  For  example  the  roles  ‘classified’  and 
‘classifier’ are defined for <is classified as a> relations in general. 
This  makes  that  it  is  rarely  useful  to  explicitly  mentioning  the 
individual roles, such as in the case if the classification of D-1 on the 
first line of  Table 47. Also the kinds of roles on the third line are 
already defined in the upper ontology of the definition of the concept 
< can have a role as a>. Constraints are often only applicable for 
kinds of things  when they play a particular kind of role, thus in a 
particular  context. As those constraints are not generally applicable 
for  all  things of  a  kinds,  it  is  necessary to explicitly model  their 
kinds of roles in order to be able to put constraints on them. Thus, 
explicitly modeling kinds of roles are important only to enable the 
specification of constraints on their role players in that context. This 
could for example be the case for expressions such as the second 
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row of Table 47, when there are constraints on door heights put in a 
particular ‘validity context’ (for the expression of validity contexts 
see paragraph 8.2 and 13.4.

10.8 Information requirements
Requirements to deliver particular kinds of information for products 
of  particular  kinds  differs  from  requirements  that  specify  the 
required and allowed content of a database.  In this paragraph we 
describe  how  those  different  requirements  can  be  expressed  in 
Formal English 

10.8.1 Product information requirements
Organizations  or  individual  persons  can  express  requirements  for 
information  that  should  be  delivered  by  other  parties,  typically 
together with the delivery of products or services. Such hand-over 
requirements specify for example that for each product of a given 
kind it is required that particular ideas shall be documented when 
they  are  applicable  for  an  individual  product  of  that  kind. 
Conventionally such requirements are expressed as requirements to 
deliver and fill-in some standard ‘data sheets’ or ‘spec-sheets’ for 
each individual product of the appropriate kinds. This caused that 
many organizations have developed standard forms for various kinds 
of products.

A modern way of specifying such requirements is to specify that 
such  information  shall  be  delivered  in  electronic  form.  This  has 
resulted in the conversion of paper standard forms into electronic 
versions of those forms. However, those delivered electronic files 
could usually not be imported directly in existing databases. 

Requirements  that  are  expressed  as  Formal  English  information 
models that apply kinds of relations that express requirements enable 
computer  supported  verification  as  well  as  import  in  existing 
databases.  Such  information  models  are  similar  to  knowledge 
models that express possibilities. The main difference is that kinds 
of relations of the type <can have ...> are replaced by relations of the 
type <shall have ...>. For example, it might be specified that for each 
compressor it is required to provide data for a database, such as its 
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name, its capacity, its impeller as one of parts, and the diameter of 
that part,  as well as a data sheet (or a dedicated compressor data 
sheet). This can be specified as follows:

equipment item shall have as name a text string
compressor shall be described by means of a data sheet 
compressor shall have as aspect a capacity
capacity shall be quantified on scale dm3/s
compressor shall have as part a impeller
impeller shall have as aspect a diameter

Etc.

Note that these requirements imply that for each individual thing of 
the specified kind such a requirement holds.

Some of the requirement might not be applicable, or might only be 
applicable  for  subtypes  of  the  specified  kinds.  For  example, 
requirement  for  an  impeller  as  part  is  not  applicable  for 
reciprocating  compressors,  but  only  for  centrifugal  compressors. 
This  means that  the third requirement  cannot  be satisfied for  the 
subtype ‘reciprocating compressor’. Therefore instead of the above 
requirement for an impeller it is better to specify:

centrifugal compressor shall have as part a impeller

In  a  conventional  database  it  is  not  so  simple  to  specify  such 
requirements  for  subtypes  of  kinds  of  things  if  each  subtype  is 
represented by an entity type. 

10.8.2 Specification of allowed values
In many cases there are constraints specified for the values that are 
allowed as values for required or possible aspects. Those allowed 
values can be either enumerated lists of values, also called pick lists, 
or they can be specified as a range for numeric values. 

For example:

model X shall have a color from the list of model X colors
model X shall have a height within range 20-30 mm
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Note that these two expressions are not valid standard Formal English 
expressions,  because the kinds of relations are not in the dictionary, 
because  for  maintaining  flexibility  the  generic  possession  of  aspect 
relation is not subtyped according to its kind of aspect.

Typically, a constraint for values of an aspect of the specified kind is 
applicable only in the context of a specified kind of possessor. In 
other words, the pick list or allowed range is not applicable for every 
value for an aspect of the specified kind. The constraint is only valid 
for aspects of the specified kind in case the aspect plays a role of 
being possessed by a possessor of the specified kind. In other words, 
the constraint is applicable for a kind of intrinsic aspect (which is a 
kind of role that is by definition played by an aspect towards a kind 
of possessor). 

Therefore, to express such a constraint it  is required to define an 
explicit kind of intrinsic aspect, which is a role that is played by the 
specified kind of aspect and then specify the constraint on that kind 
of intrinsic aspect, so that it is applicable only for aspects that play 
such a role. The latter specification of the constraint defines that the 
value for an aspect in such a role <shall be one of the> pick list 
collection or range of aspect values. For example, 

model X shall have as aspect a color

This implies that there is a kind of intrinsic aspect, called ‘color of 
model  X’,  which can be made explicit  in  an Expression table  as 
follows:

Name of left 
hand object

Name of kind of 
relation

Name of kind or 
right hand role

Name of right 
hand object

model X shall have as aspect a color of model X color

Note that in the above Expression table the concept ‘color of model X’ is 
not explicitly defined. An explicit definition of the kind of intrinsic aspect 
is given by a corresponding alternative expression of the requirement that

model X shall have as intrinsic aspect a color of model X

This requires an explicit definition of the kind of intrinsic aspect. 
This is done by the expression of three assertions that relate it to the 
concepts ‘intrinsic aspect’, ‘aspect’ and to the concept that is by 
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definition its possessor. Such a definition is expressed for this 
example as follows:

color of model X is a specialization of   intrinsic aspect
color of model X is by definition an intrinsic aspect
color of model X is by definition an intrinsic aspect of a model X

Once an intrinsic aspect is introduced it becomes possible to use it in 
expressions of constraints, such as:

 color of model X shall be one of the model X colors

The  definition  of  a  (constraining)  collection  of  enumerated 
qualitative aspects is  discussed in chapter  11.  The definition of a 
(constraining) range was described in paragraph 8.2.

10.8.3 Database information requirements
The specification or definition of databases conventionally includes 
the creation of a data model (also called schema), typically starting 
with a conceptual data model, which is converted in a logical data 
model, which is then converted in a physical data model.

Usually,  such  a  database  development  process  implies  the 
specification  of  a  specific  language  by  defining  the  following 
components:

o The specification of the terminology. For example in the form of 
names of entity types, names of attribute types and allowed values for 
attributes.

o The specification of the structure of the expressions. For example 
in the form of table columns for the attributes, which imply relations 
of  particular  kinds  between  those  attribute  types,  and  thus  imply 
relations between the attributes.

Note that the use of Gellish implies that such a language definition is 
not required any more, apart from possible necessary extensions of 
the Gellish dictionary.

The third component that need to be specified is:

o The  specification  of  the  information  requirements  and  storage 
possibilities. 
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Note that  a  database  definition does  not  specify  that information 
should be delivered or imported. Only, if some data are entered, then 
it specifies which other related data can, or shall, or is allowed to be 
entered as well. 

Sometimes  detailed  requirements  models,  such  as  the  above 
requirements  for  compressor  data,  are  used  for  definition  of 
databases. However, this results in databases that only allow for the 
entry of such data. Generally databases will be designed for more 
flexibility. For example to enable the entry of other equipment data 
as well. However, that means that the above detailed requirements 
are usually not reflected in a database definition for equipment data.

Furthermore,  the  above  requirements  model  for  compressor 
information  is  independent  of  the  structure  of  a  database.  For 
example a database may have an entity type ‘compressor’ or a more 
general entity type ‘equipment item’ and may or may not have a 
separate entity type for ‘impeller’, etc. 

Requirement  models  in  Formal  English  can  specify  the  detailed 
information  requirement  only  and  do  not  need  separate 
specifications of database requirements and specifications of storage 
capabilities,  because  Formal  English  expressions  don’t  have  the 
constraints  that  data  structures  of  databases  imply  on  the 
information.

10.9 Conceptual correlations and physical laws
Conceptual correlations and physical laws are higher order kinds of 
relations  between  kinds  of  things.  They  express  knowledge  that 
aspects of particular kinds are correlated. Such a correlation usually 
holds under the condition that such correlated aspects are possessed 
by the same physical  object  or  the same collection of  interacting 
physical objects. 

248



This is illustrated in Figure 92.

Figure 92, Correlated aspects of a physical object

For example, the physical law, as is discovered by Newton states 
that F = m * a. This law correlates three kinds of aspects, a force F, a 
mass m and an acceleration a, each of which should be possessed by 
or  operate  on  the  same thing  of  a  specified  kind  (in  this  case  a 
physical object). 

The definition of  a  law should be  implemented in  an executable 
program with the proper kinds of aspects that act as parameters in 
the correlation. Such a program should be able to calculate the third 
parameter value when two other parameter values are known, and it 
should be able to verify whether the values are consistent in case all 
parameter values are known. 

In  the  example  of  the  Law of  Newton  the  three  parameters  are 
specified in the model as follows:

Law of Newton is a qualitative subtype of x * y – z = 0
Law of Newton has by definition as parameter a force
Law of Newton has by definition as parameter a mass
Law of Newton has by definition as parameter a acceleration
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Figure 93 presents a number of subtypes of conceptual correlation.

Figure 93, Conceptual correlations

The <corresponds with> relation is a binary correlation between two 
qualitative aspects. It can be used for example to express that a kind 
of substance water corresponds with a molecular weight of 18. Its 
subtype  <corresponds  under  normal  conditions  with>  specifies  a 
correspondence  under  the  condition  that  the  pressure  and 
temperature  is  at  ‘normal  atmospheric  conditions’  (also  called  a 
normal  state),  which  is  defined  as being  room  temperature  (20 
degree  C)  and  average  atmospheric  pressure  at  sea  level  (1013 
mbar).  Thus  we  can  state  that  water  at  normal  conditions 
corresponds  with  liquid.  These  examples  can  be  expressed  as 
follows:

water corresponds with mw 18
water corresponds under normal conditions with liquid

Whereas mw 18 is defined as:

mw 18 is a qualitative subtype of molecular weight
mw 18 is by definition quantified on scale as 18

A relation between a qualitative aspect range and its boundary value 
is a binary correlation. Such a boundary value is not defined as an 
aspect of the range, because aspects cannot have aspects, but aspects 
of physical objects can be correlated. For example, a boiling range 
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of some mixture  between 80 and 100 degC can be related to  its 
boundary values as follows:

80-100 degC has by definition as lower boundary 80 degC
80-100 degC has by definition as upper boundary 100 degC

10.10 Conditional consequence relations (if-then)
In  paragraph  10.5 we  stated  that  general  requirements  imply  a 
condition for a consequence. Such requirements were called quasi-
unconditional requirements.

There  is  another  category  conditional  consequence  relation:  a 
qualitative if-then-else relation (5775). This is a higher order relation 
which use is illustrated in Figure 94. 

Figure 94, Conditional consequence relation

An if-then-else relation can have one or more options for conditions 
(that are expressed as relations). Such a condition is typically one of 
the  options  for  a  value  of  an  aspect.  For  example,  a  conditional 
action (CA type-1) to switch a light on, under the condition that a 
valve is open, can be expressed as follows:

CA type-1 has by definition as condition a option type-1
CA type-1 shall have as consequence a action type-1

Whereas option type-1 is a condition relation of the following kind:

valve position can have as option open

There can be more than one of such conditions, which means that all  
such conditions have to be satisfied. Furthermore, there can be two 
groups  of  conditions.  The  second  group  consists  of  ‘alternative 
conditions’, which mean that either the conditions in the first group 
or the conditions in the second group may be satisfied. 
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If the condition(s) are satisfied,  then a consequence of a particular 
kind (action type-1) shall be performed. An example of an action 
type-1 might be: ‘switch a light on’. Such an action type is a kind of 
occurrence, which can be specified in further detail as is described 
before.

If  the  condition(s)  are  not  satisfied  it  might  be  the  case  that  an 
alternative kind of action should be performed (an else-clause).
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11 Relations with collections

Collections of things should be distinguished from kinds of things. A 
kind is defined independent of its number of members. A collection 
has  by  definition  a  particular  number  of  elements  at  a  particular 
moment in time and its number of elements may vary over time. 
Collections  may  consist  of  things  that  are  collected  and  brought 
together, but may also be as-if brought together. Collections can be 
unordered or ordered. Examples of kinds of ordered collections are 
as lists and tables.

11.1 Relations between single things and collections
We can  distinguish  three  categories  of  collections:  collections  of 
individual  things,  collections  of  kinds  of  things,  and  mixed 
collections that include individual things as well as kinds of things.

Figure 95 presents the hierarchy of relations between a single thing 
and one of these three categories of collections.

Figure 95, Relations about collections

The general collection relation (2846) in  Figure 95 can be used to 
specify  that  some single  thing  is  an  element  of  any of  the  three 
categories  of  collections,  its  first  subtypes  specifies  that  an 
individual thing is an elements of (1227) a collection of individual 
things.  The  second  subtype  specifies  that  a  kind  of  thing  is  an 
element in a collection of kinds of things (4730). 
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The other relation between a single thing and a collection specifies 
that  the  collection  consists  of  all  elements  that  are  required  to 
compose a particular individual thing.

Figure 96 illustrates how these kinds of relations can be applied.

Figure 96, Individual things in collections of individual things

The left hand side of  Figure 96 represents an individual collection 
that  is  composed  of  individual  things.  This  is  specified  by  the 
statement that it is classified as a collection of individual things. A 
number  of  elements  can  be  collected  into  that  collection.  The 
statement that an individual thing is an element of a collection of 
individual things is expressed as in the following example:

Car-123 is an element of Company X car fleet

Instead of classifying each individual component in a collection of 
individual  things,  it  is  also  possible  to  collectively  classify  each 
element  in  a  (homogeneous)  collection  by  one  statement  as  is 
illustrated in the last line of  Figure 96. This enables to work with 
classified elements  in  a  collection,  although the  individual  things 
that make up the collection may not be identified individually.

A  collection  of  individual  things  may  have  aspects,  such  as  a 
‘number of elements’ or a (total) weight, just as single individual 
things  can  have  aspects.  Furthermore  it  can  be  specified  that  a 
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collection is complete and sufficient to be used to compose another 
individual thing. 

For  example,  the  collection  of  components  that  make  up  an 
assembly. This is illustrated on the second line in Figure 96.

Figure 95 also presents a relation that specifies that a kind of thing (a 
concept) is an element of a collection of kinds of things (4730). For 
example a company may define a collection of kinds of categories to 
list the kinds of things that they keep in stock. Then the idea that a 
kind of thing (such as spare part type ‘xyz’) is an element of the 
collection of kinds of stock items is expressed as in the following 
example:

xyz is an element in collection of concepts kinds of stock items

There  are  also  other  kinds  of  relations  available  that  specify 
collective relations for each element in a collection. For example: 

o A  particular  collection  of  information  items  consists  of 
information  items,  <each  of  which  includes  information  about> 
(5047) some object,  whereas the object  can be either in individual 
thing or a kind of thing.

o A collection of concepts consists of concepts, <each of which is a 
subtype of> (5095) a particular supertype concept. This specifies that 
the  elements  in  the  collection  of  concepts  all  are  subtypes  of  the 
supertype concept. 

11.2 Relations between collections
Relations between collections in general (4748) apply to all  three 
categories of collections: collections of individual things as well as 
collections of kinds of things and mixed collections. 

In  set  theory  relations  between  collections  are  usually  taken  as 
operations on collections. Strictly speaking this could be interpreted 
as  a  change  of  state,  so  that  the  state  before  execution  of  the 
operation differs from the state after execution of the operation. This 
would mean that we can distinguish between the state of a collection 
before and after the operation. This might be described as a change 
of  state  process  of  actions  that  take  place  in  time,  whereas  the 
number of elements in the collection varies over time. However, in 
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most cases a time that an operation takes place is not specified and is 
not meant to be specified. Thus usually an ‘operation’ describes a 
state after execution of an operation.

Furthermore, relations between collections are usually higher order 
relations,  which  involve  three  or  more  collections.  Therefore,  in 
general  those  relations  shall  be  expressed  in  a  similar  way  as 
correlations  are  expressed,  which  means  that  multiple  binary 
relations are required to express one higher order relation.

Unions of collections

For  example  a  union  (operation  or  calculation) 
between collection A and collection B and possibly 
more  collections  delivers  a  collection  C  (often 
denoted as C = A  ∪ B). In Formal English such a 
union  operation  is  described  by  multiple  binary 
statements, one for each collection that is united in a 
uniting collection. For example, assume that it holds 
that two collections (A and B) are united in a third 
one (C). This can be expressed as follows:

A contains elements that are united in C
B contains elements that are united in C

Then C contains all elements that are present in A as well as those 
that are present in B. It is a general rule in set theory, that if the 
united  collections  (such  as  A  and  B)  contain  (partly)  the  same 
elements, then the uniting collection (C) will only contain such items 
once (thus an element will not be duplicated, as an element can only 
exist  once).  Therefore  potential  duplicate  relations  between  an 
element and collection C shall be eliminated. For example, assume 
that:

E-1 is an element of A
E-2 is an element of A
E-2 is an element of B
E-3 is an element of B

Then the above union statements imply that collection C consists of 
the  elements  E-1,  E-2  and  E-3.  Note  however  that  the  union 
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statements do not imply that new statements are generated to express 
in an explicit way that E-1 is an element of C, etc. Thus, the union 
statements  imply that  during a  search for  the  elements  in  C,  the 
software should also search for and present the elements in A and B 
(while preventing to present duplicates).

It may also be that elements are explicitly stated to be an element of 
collection C, whereas those elements may be or may not be also 
elements of A or B. For example:

E-3 is an element of C 
E-4 is an element of C
E-5 is an element of C

Because in this example E-3 is also an element of B directly, it will 
nevertheless appear only once in collection C. 

Furthermore,  it  is  possible  to  make  an  exception  from  being 
collectively declared to be united. This can be expressed by stating 
that an element is excluded from being collectively declared to be 
united in a collection. For example:

E-1 is excluded from C

This  statement  overrules  the  consequence  of  the  first  union 
statements, so that E-1 is not an element of collection C although is 
an element of A and was initially stated to be included in C. Such an 
exclusion  does  not  overrule  an  explicit  statement  about  being  an 
element of the collection.

Subsets and supersets of collections

 A subset-superset  relation is  a binary relation 
between (two) collections that specifies that the 
elements in a collection (A) are a subset of the 
elements  in  another  collection  (B).  This  is 
independent  of  the  question  whether  the 
elements in A and B are explicitly identified or 
declared to be elements of the collections.
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For example, it  may be that collection B is populated, so that its 
elements are explicitly declared to be an element of B. Then assume 
that it is stated that

A is a subset of B

Then this statement only means that the elements of collection A are 
also elements of  collection B,  without  specifying which elements 
belong to collection A. 

The inverse statement is that:

B is a superset of A

Note that the above union statement, which states that the elements 
of A are united in C does not necessarily imply that C is a superset  
of A, as some elements may be excluded from being collectively 
included. 

Intersections of collections

Intersection of sets as defined in set theory is a 
relation  between  a  collection  of  sets  and  an 
intersection  collection  that  indicates  that  the 
elements of the intersection collection consists 
of all the elements that are member of each of 
the intersected collections and no others.

Thus to express an intersection (an intersecting 
collection) I of the collections A, B and C it is 
required  to  first  define  a  collection  of 
collections  (CC).  That  collection  has  three 
collections  as  elements.  This  is  expressed  as 
follows:

A is collected in CC
B is collected in CC
C is collected in CC

Then is can be specified that 

CC are sets with as intersection I 
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Differences of collections 

A difference between sets, also called a relative 
complement of sets, as defined in set theory is a 
correlation  between  three  collections  and  is 
usually expressed as A\B = C (or also written as 
A - B = C). This can be expressed as follows:

A contains elements that are united in C
B contains elements that are subtracted from being united in C

The definition of the subtraction relation (<contains elements that 
are  subtracted  from  being  united  in>)  specifies  that  it  overrides 
statements that specify that elements are united in. This makes that 
the statements are independent of the sequence in which they appear 
in a database.

There is another kind of difference that can be expressed as a binary 
relation.  It  is  a relation between a collection of collections and a 
resulting collection that indicates that the elements of the resulting 
collection consist of all the elements of the united sets except for the 
elements in the intersection of the sets. In other words the resulting 
collection consists of the elements that appear in only one of the 
compared collections.

For a difference of two collections A and B the difference can also 
be expressed as (A\B) ∪ (B\A).

But using a binary relation, starting from the same set of sets CC as 
above, we can express:

CC are sets with as difference D

In this  example  collection  D is  a  collection  of  elements  that  are 
elements of A, B and C, but excluding the elements that are in more 
than one of A, B and C. 

Note that for two collections A and 
B this relation expresses the same as 
a ‘symmetric difference’ between A 
and  B  as  is  defined  in  set  theory. 
However,  for  more  than  two 
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collections  the  resulting  collection  differs  from  a  symmetric 
difference.
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12 Integration with natural languages, 
algorithms & documents

A database or message header specifies in which (formal) natural 
language  the  content  it  expressed.  In  addition  to  that,  each 
expression  (each  line  in  an  expression  table)  may  contain  a 
statement about the language (and the language community) of the 
name of the left hand object, which can deviate from the language of 
the whole database or message.

12.1 Natural language text
The  language  of  a  whole  expression  also  determines  the  natural 
language that is used for the textual description or definition of a 
defined object (see expression component 4 and 65 in par.  13.4.3. 
Those  descriptions  can  also  be  used  to  relate  the  concepts  in  a 
formal  English  expression  model  to  natural  language  text.  This 
enables  that  the  contents  of  documents  can  be  incorporated  in  a 
model, by including complete sentences or paragraphs in a model, 
without the need to explicitly model those sentences in detail.

This is illustrated in the following table.
UID of 

left 
hand 
object

Name of left 
hand object

UID of 
kind of 
relation

Name of 
kind of 
relation

UID of 
right hand 

object

Name of 
right hand 

object
Full description

130,069 compressor 5,298
shall be 

compliant 
with

106
API 617 par. 

5.3.1

106
API 617 par. 

5.3.1
1,726

is a 
qualitative

970,007 requirement

The purchaser and 
the vendor shall 
mutually 
determine the 
measures that 
must be taken to 
comply with any 
governmental 
codes, regulations, 
ordinances, or 
rules that are 
applicable to the 
equipment.

Table 48, Incorporation of natural language text
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Table 48 illustrates that any compressor shall be compliant with the 
API  617  paragraph  5.3.1  standard  (according  to  some  party  or 
standard, which is specified in the ‘validity context’). On the next 
line  the  text  of  that  paragraph  is  specified  in  natural  language 
English. In this way each separate requirement from such a standard 
can be incorporated in a formal English semantic model and related 
to the component to which it applies!

In addition to that it might have been specified that the paragraph is 
an integral part of the API 617 standard, whereas also the sequence 
of  the  paragraphs  can  be  modeled  as  well  as  the  distribution  of 
paragraphs over chapters, etc. In that way whole documents can be 
modeled  and  later  composed  from  the  models.  This  simplifies 
maintenance  of  documents,  especially  of  coherent  sets  of 
requirements documents.

12.2 Programming languages (algorithms) and 
formulae

In a similar way it  is possible to incorporate expressions that are 
encoded  in  programming  languages.  This  can  be  used  to  relate 
objects  or  activities  to  algorithms or  mathematical  formulae.  The 
qualification of the algorithm or formula should provide sufficient 
information about the encoding system that shall be used to interpret 
the expression. This can be applied for example for the computer 
interpretable storage of formulae or algorithms that describe kinds of 
shapes (geometric objects).
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12.3 Files with documents, drawings, etc.
A model can also incorporate a reference to an external electronic 
file, as is illustrated in Table 49.

UID of 
left 

hand 
object

Name of left 
hand object

UID of 
kind of 
relation

Name of kind of 
relation

UID of 
right 
hand 
object

Name of right hand 
object

Full 
description

130,069 compressor 5,298
shall be compliant 

with
101 API 617

101 API 617 1,726 is a qualitative 910,137 standard specification
101 API 617 4,996 is presented on 102 API 617.pdf
102 API 617.pdf 1,225 is classified as a 493,748 pdf file 

102 API 617.pdf 1,227 is an element of 103
http://

www.gellish.net/
dictionary

103
http://www. 
gellish.net/
dictionary

1,225 is classified as a 492,017 directory

Table 49, Integration of document files and drawings in Formal 
English models

The names of things may also include file extensions, such as pdf, 
preceded by a dot, access paths for directory addresses and internet 
addresses (URL’s or URI’s). This enables software to recognize file 
formats  and  storage  locations  and  to  retrieve  as  file,  launch  an 
appropriate software application and thus display the content of the 
file or database in the application.

Note  that  a  reference  file  can  contain  documents,  drawings, 
databases, and any other binary encoded content.
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13 Expression components

Expression  components  are  the  components  that  make  up  an 
expression  conform  the  Gellish  syntax.  Correct  interpretation  of 
expressions require not only the components that express the main 
idea, but also those that provide the appropriate context. Therefor, 
the  expression  of  each  main  idea  should  be  accompanied  by  an 
appropriate number of contextual facts and it is insufficient when a 
semantic information model only includes expressions of core ideas 
(the topics with the intentions of the expressions). That additional 
contextual information implies that each core idea shall be related to 
a  number  of  contextual  information  components.  The  following 
paragraphs discusses those expression components and the relations 
between them. Precise definitions of the expression components and 
kinds of relations between them are provided in the Gellish Syntax 
document (Ref. 4).

13.1 Expression of core ideas
A core idea is the bare idea that is intended to be expressed, without 
its context and irrespect of being an opinion or fact or imaginary 
state  of  affairs.  The  following  relations  are  required  for  the 
expression of a core idea:

o A  binary relation that  relates two things that  are involved in a 
main idea.
The two related things are: a player of the first role that is required by 
the relation (usually10 the left hand object) and a player of the second 
role that is required by the relation (usually the right hand object). The 
related things are represented in the relation by their respective unique 
identifiers (UIDs).

o A classification of the relation. 
This is a statement that classifies the relation by a (standard) kind of 
relation. This contextual fact is represented by a pair of things: the 

10 In Formal English expressions it  is  allowed that  inverse phrases for 
kinds  of  relations  are  used.  However,  implementation such as  in  Ideas 
tables may constrain the use of inverse phrases. In constrained tables the 
left hand object is always the player of the first role.

264



UID of the idea and a UID of the kind of relation that classifies the 
relation.

o A classification of a quantification relation by a scale (a  unit of 
measure) – when applicable. 
This is called a contextual fact that classifies a quantification relation 
by a (standard) kind of scale (also called a unit  of measure).  This 
contextual fact is represented by a pair of things: the UID of the idea 
and a UID of the kind of scale that classifies the relation.

o A qualification of the expression by the  intention with which the 
expression is communicated. 
This is a contextual fact that expresses with which intention the main 
idea is communicated. For example, it may express that the idea is 
communicated  as  an  assertion  or  as  a  denial,  a  confirmation  or  a 
question. (default = assertion)

o Optionally: an extent of being the case.
This  specifies  qualitatively  or  quantitatively  as  a  fraction  or 
percentage  on  a  scale  to  which  extent  a  statement  is  the  case. 
Especially the fraction of a whole that is occupied by a part or the 
fraction  of  a  mixture  that  is  classified  by  the  specified  kind  of 
substance.

Any  expression  of  a  core  idea  in  a  formalized  language  should 
therefore  consist  of  the  above  relations,  whereas  those  relations 
relate  six  component.  Those  expression  components  can  be 
represented by UIDs that are independent of any natural language. 
The components are presented in Table 50.

Component ID
(column ID)

Description of object

1 UID of a idea
2 UID of a left hand object
60 UID of a kind of relation
15 UID of a right hand object
66 UID of a scale (unit of measure)
5 UID of an intention

Table 50, The core elements of an expression
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When those six component are arranged in a syntactic structure that 
defines  the  above  describes  relations  between  them,  then  that 
structure forms an expression. Thus the expression of a core idea is 
an  arrangement  of  six  components,  consisting  of  six  UIDs,  in  a 
syntactic structure.

13.1.1 Ideas table core
A  tabular  syntactic  structure  is  a  possible  implementation  of  an 
expression as the relations between the columns in the table define 
the relations between the components of the expression. Therefore 
the  core  of  an  Ideas  table  can  represent  the  above  expression 
components and their relations and thus enables the expression and 
interpretation of the meaning of main ideas. That core of an Ideas 
table is therefore defined by six columns, identified by a column ID. 
Each  row  in  an  Ideas  table  represents  a  combination  of  the  six 
components, each represented by its own UID. 

For example, Table 51 is a core of an Ideas table that illustrates the 
expression of idea 201.

1 2 60 15 66 5
UID 
of an 
idea

UID of a 
left hand 

object

UID of a 
kind of 
relation 

UID of a 
right hand 

object

UID of 
a UoM

UID of 
an 

intention
201 101 5026 102 570423 491285

Table 51, An Ideas table with the identification and expression 
of one core idea

Each object that is represented in column 2 of Table 51 is called a 
left hand object and denotes the player of a ‘first role’ in a relation, 
as defined by the definition model of the specified kind of relation. 
By analogy column 15 denotes  a  right  hand object,  which is  the 
player of the ‘second role’ in the relation of the specified kind.

The UIDs in Table 51 represent objects (things). The terms (names, 
etc.) of those objects in natural language are specified in expressions 
of separate contextual facts, which are called naming relations, as is 
specified  in  the  paragraph  13.5.  Those  naming  expressions  are 
typically  provided in  a  Naming table  (see  par  13.4.2).  Replacing 
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UIDs or accompanying them by columns with terms that denote the 
UIDs delivers a human readable equivalent for Table 51.

Usually a Naming table will contain various synonyms terms for the 
objects that are denoted only by a UID in an Ideas table. Therefore, 
in principle it is necessary to record which term is used in which 
expression.  This  can be done by creating a separate Term Usage 
table that contains a specification of which terms are used for each 
UID that appears on a row in an Ideas table. However this issue is 
solved by using integrated Expression tables (see par. 15).

13.2 Expression of roles of role players
Each object that is involved in a relation plays a role of a particular 
kind in that  relation.  Thus each binary relation implies two roles 
played by the related objects.
Those roles often may remain implicit in expressions, because the 
kind of relation implies particular kinds of roles. For example, the 
kind of relation <is a part of> (a composition relation) implies the 
kinds of roles ‘part’ and ‘whole’. The definition of those kinds of 
roles  follows  from  the  definition of  the  kinds  of  relations  (as 
specified in the TOPini section of the Dictionary).

In some cases it  is  required to model  those roles explicitly.  This 
especially  holds  for  the  modeling  of  constraints,  when  those 
constraints are applicable only when objects of a kind play a role of 
a particular kind.
Roles can be made explicit by modeling a role as a separate object in 
either of two ways: 

o By treating a role in the same way as a role player. This means that 
if an object plays a particular role in a relation, that fact is explicitly 
expressed by two relations: 

• A relation between the object and the role that is played 
by that object.

• A relation between a relation and the role of the kind 
that is required by that relation. 

o These kinds of expressions of ideas about roles can be stored in the 
same  way  as  all  other  expressions  of  ideas.  It  only  requires  the 
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recording of all the roles as separate objects and explicit classification 
of  those  roles  and  defining  kinds  of  roles  in  their  own  subtype-
supertype hierarchy (taxonomy).

o By inserting a left hand and right hand kind of role in an orderly 
expression. This implies that for each main idea four contextual facts 
are defined: two that specify that the objects play roles of those kinds 
and two that specify that those kinds of role roles are subtypes of the 
kinds of roles that are by definition required by a relation of such a 
kind.

In a tabular form this means that an Ideas table is extended with two 
additional columns; one for the left hand kind of role and another for 
the right hand kind of role, whereas also the names of the kinds of 
roles  need  to  be  defined  in  a  Naming  table.  The  kinds  of  roles 
classify the played roles and are implied subtypes of the kinds of 
roles that are required by the kind of relation. This is implemented in 
an Ideas table as follows:

1 2 72 60 74 15 66 5
UID 
of a 
idea

UID of 
a left 
hand 
object

UID of 
a left 
hand 

kind of 
role

UID of 
a kind 

of 
relation

UID of 
a right 
hand 

kind of 
role

UID of 
a right 
hand 
object

UID of 
a scale

UID of an 
intention

201 101 301 5026 401 102 570423 491285

Table 52, Ideas table core extended with explicit roles

Thus the explicit modeling of the roles implies an extension of the 
core of a ideas table with the following columns:

Component ID
(column ID)

Description of object

72 UID of a left hand kind of role
74 UID of a right hand kind of role

Table 53, Extension of the core of an Ideas table with roles

13.3 Expression of queries
The  modeling  of  a  dialogue  (being  a  human  activity)  typically 
requires modeling the various communication activities as separate 
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occurrences.  The  questioning,  answering,  confirmation,  etc.  are 
modeled  as  activities  that  are  classified  by  kinds  of  activities. 
However,  with or  without  modeling the dialogue itself,  it  is  also 
required to model a question or query as a message. The general 
model of a query message is discussed in par. 2.6. 

The two components of an expression that express contextual facts 
are specified in Table 54. 

Component 
ID

(column ID)
Description of object

80 Left hand string commonality
81 Right hand string commonality

Table 54, String commonality columns in a Query table

These  components  imply  additional  relations  between  these 
components and the left hand term (character string) and right hand 
term  respectively  that  should  be  interpreted  from  the  syntactical 
structure of the expression. 

A tabular implementation enables to interpret the relations from the 
definition of relations between the columns. Therefore, a query can 
be  implemented  as  a  Query  table.  Such  a  Query  table  is  an 
Expression table that contains two additional columns (80 and 81) in 
which the commonality criteria for the left hand and the right hand 
term can be specified.

13.4 Expression of contexts
A  proper  interpretation  of  the  meaning  of  an  expression  (or 
proposition)  requires  not  only  that  the  main  idea  (the  topic)  is 
expressed  with  the  terms  in  the  user  preferred  language  and 
language  community,  but  it  also  requires  that  the  expression 
includes information about  the context  in  which an expression is 
made. Therefore, semantic modeling not only requires expressions 
of  the  main  ideas  themselves,  but  it  also  requires  that  each 
expression is accompanied by additional expressions of facts about 
the main fact. Such additional facts are called 'contextual facts' about 
a main idea. 

269



Contextual  information  is  also  required  for  the  management  of 
information.  For example,  for proper interpretation as well  as for 
proper  information  management  it  should  be  recorded  who  has 
created an expression, when that was done, what the status of the 
expression  is,  since  when  it  is  outdated  or  replaced  by  another 
expression of an idea, in what language it is expressed, etc. 

Each expression of an idea shall be accompanied by such contextual 
facts. Standard kinds of contextual facts are discussed below.

13.4.1 Language and language community contexts 
Facts  and  idea’s  are  basically  natural  language  independent. 
Therefore in a semantic model that uses UIDs to represent things 
and ideas, also the expressions are basically language independent.

However,  terms  (names)  of  things  are  language  and  language 
community context dependent as was discussed in par. 5.1. 
To  relate  language  independent  UIDs  to  natural  language  and 
language  community  dependent  terms  (names)  it  is  necessary  to 
specify naming relations.

Every relation between a term (including a phrase) that is used in 
any expression and the thing (UID) that is denoted by that term as 
well  as  the  relations  with  the  language  and language  community 
contexts form a collection of contextual binary relations or triples 
(also called a ‘graph’) about the expression.

The components of an expression that represent the language and 
language community contexts are given in Table 55.
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Component ID
(column ID)

Description of object

69 UID of a natural language
71 UID of a language community
101 Term (name, phrase, abbreviation, code, 

URI, number or symbol)
60 UID of kind of relation
2 UID of a thing that is denoted by the 

‘term’ in the language, as originated in the 
language community

Table 55, Components for the expression of language and 
language community context

The  relations  between  these  components  of  an  expression  (as 
described  in  par.  5.1.2)  are  implemented  through  the  syntactical 
structure or format of the expressions.

The definitions of the language and language community are given 
in the following paragraphs. The definition of the components 101, 
60 and 2 were already provided in par. 13.1)

13.4.2 Naming table
In a tabular implementation the relations between the components 
are defined by the definition of the relations between the columns in 
the  table.  For  example,  each  of  such  a  collection  of  contextual 
relations can be represented in tabular form as one Naming table, 
provided  that  the  relations  between  the  columns  in  that  table 
represent the kinds of relations for that collection. 

Such a Naming table therefore has the following table header:

69 71 101 60 2
UID of 

a 
language

UID of a 
language 

community

Term UID of kind 
of relation

UID of 
a named thing

Table 56, Header of a Naming table

The columns 69, 71 and 101 together form a unique key.
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The columns have their own column ID’s that uniquely identifies the 
columns,  independent  of  a  natural  language.  This  enable  that  the 
column titles are free text descriptions that can vary per language or 
user preference. 

69 54 71 16 101 60 2
UID of the 
language of 

the term

Name of 
the 

language

UID of the 
language 

community

Name of the
language 

community

Term
(name)

UID/Name of kind 
of relation

UID of
named 
thing

910036 English 193263 engineering pump 5117/is a name of 130206
910037 Dutch 193263 engineering pomp 5117/is a name of 130206
910038 German 193263 engineering Pumpe 5117/is a name of 130206
910036 English 190668 linguistics German 5117/is a name of 910038
910038 German 190668 linguistics Deutsch 5117/is a name of 910038
910037 Dutch 190668 linguistics Duits 5117/is a name of 910038

910036 English 193259 ontology
assembly 
relation

5117/is a name of 1190

910036 English 492015 Gellish is a part of1981/is a synonym of 1190
910036 English 492015 Gellish has as part 1986/is an inverse of 1190

910036 English 492015
Gellish 

alternative
is a whole 

of
1986/is an inverse of 1190

Table 57, Naming table with UIDs and names of a concept in 
various languages

The  use  of  a  Naming  table  is  illustrated  in  Table  57 on  three 
examples: 

1. The concept represented by UID 130206 is denoted in English as 
pump, in German as Pumpe and in Dutch as pomp. The language 
community where these names originate is ‘engineering’.  Table
57 illustrates how those various names in those three languages 
are allocated to the concept that is denoted by UID 130206.

2.  Table 57 also illustrates an example of how names of languages 
differ in various languages. For example, the name of the German 
language,  expressed  in  German  is  Deutsch  and  in  Dutch  it  is 
Duits. Table 57 illustrates how the various names of the German 
language  are  related  to  the  concept  that  is  denoted  by  UID 
910038.

3. The third example gives the names a kind of relation, its Formal 
English phrase as a synonym, its inverse Formal English phrase 
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and an alternative for the Formal English phrase.

Table 57 should be interpreted as follows:

 The table has two header rows. The numbers in the first row, 
69,  54,  71,  16,  101,  60  and  2,  are  standardized  natural 
language independent identifiers of the table columns. They 
refer to standard columns in Expression tables as is described 
later in this document. The texts on the second line are not-
standardized names of those columns.

 The second and the fourth columns (54 and 16, in red) are 
added for clarification, but are semantically superfluous and 
are not part of a standard Naming table. 

 The UID of the language in the first column (69) specifies 
the language in which the term in column (101) is expressed. 
Thus  the  number  910036  on  the  first  row,  which  is  the 
Gellish UID of the English language, specifies that the term 
‘pump’ is  an  English  term for  concept  130206.  Similarly, 
UID 910037 denotes the Dutch language and UID 910038 
denotes the German language. 
Note that the fourth line specifies that the term ‘English’ is 
the English name of the language that is represented by the 
UID 910036.

 Column 60 denotes a UID of the kind of relation. In order to 
facilitate the readability of the example table the name of that 
kind of relation is given in addition, although that name is 
superfluous and does not belong to a Naming table. Note that 
the  UID of  the  kind  of  relation  could  also  indicate  other 
kinds of relations, such as ‘is an abbreviated name of’ or ‘is a 
code for’ and some other variations. If the UID is 1986, then 
the ‘name’ consists of a phrase that denotes that in a relation 
the left and right terms are switched to express the same idea 
as when other phrases are used.

 The columns 69, 71 and 101 together form a unique key for 
the table.
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Not only all dictionary concepts, but also each user-defined concept 
or  individual  thing  (user  defined object11)  that  is  used  in  Formal 
English expressions of main ideas shall have a Gellish UID. Each 
user  defined  object  UID  shall  be  unique  and  shall  be  allocated 
conform the rules described in par. 5.1.1.

13.4.3 Prime contextual facts
Each main idea is accompanied by a number of prime and secondary 
contextual  facts.  Together  that  collection  of  facts  is  called  the 
expression context, which is a set of kinds of contextual facts. Each 
of the contextual facts (which are specified below) is expressed as a 
binary relation that relates a pair of objects and a classification of 
that relation. The classification relation and the classifying kind of 
relation  that  classifies  the  relation  may  remain  implicit  in 
implementations  (for  example  in  a  tabular  implementation  where 
they are defined by the definitions of the columns and the relations 
between  the  columns  that  make  up  an  expression).  However  it 
depends  on  the  kind  of  implementations  whether  the  contextual 
relations can be interpreted from these relations and thus whether 
they  should  be  made  explicit  in  order  to  enable  semantic 
interpretation.  The  latter  is  for  example  the  case  in  RDF 
implementations.

The objects that are specified in the following table imply relations 
that express prime contextual facts. Definitions of these contextual 
facts as well as those in the next table are given in the following 
paragraphs. 

Component ID
(column ID)

Description of object

44 A pair of left hand object cardinalities.
45 A pair of right hand object cardinalities.

30
A UID of an extent to which a main idea is the 
case

32 A UID of a probability of the main idea
34 A UID of a location where the main idea is valid
76 A UID of the accuracy of a quantification.

11 In this document the unqualified term ‘object’ is used as synonym for 
the term ‘anything’.
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70
A UID of a pick list for the qualification of 
aspects.

19 A UID of the validity context for an idea.

65
A partial definition in natural language of a 
concept or individual thing.

4
A full definition in natural language of a concept 
or individual thing.

42 A textual description of a main idea.
14 Remarks on the expression of a main idea.
8 Approval status of the expression of a main idea.

Table 58, Prime contextual facts

The definitions of these components of an expression are given in 
the following paragraphs.

13.4.4 Secondary contextual facts
The secondary contextual facts are facts that may contribute to the 
semantic  interpretation  of  the  ideas,  but  are  mainly  added  for 
administrative reasons. They include the facts in the following table.

Component ID
(column ID)

Description of object

24 Reason for latest change of status.

67
UID of the successor of the idea, in case it has the 
status ‘replaced’.

12 UID of creator of idea.
9 Date-time of start of validity of the idea.
23 Date-time of start of availability of the expression.
22 Date-time of recording of expression. (optional)
10 Date-time of latest change of the expression.
6 UID of author of latest change of the expression.
78 UID of addressee of the expression.
13 References.
53 UID of the expression of the idea. (Line UID)

50
UID of a collection of ideas to which the idea 
belongs

0
A sequence in which the expressions are presented. 
(Presentation sequence)

Table 59, Secondary contextual facts
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Uniqueness constraints are implementation constraints that intent to 
prevent that a database contains identical expressions in which also 
the  contextual  facts  are  identical.  It  depends  on  the  scope  of  a 
database which expressions including context are considered to be 
identical.  For  example,  in  an  extreme  situation  two  identical 
expressions about the same idea, thus semantically having the same 
meaning, but expressed by different persons (originators), may be 
considered to be two different expressions in one context, whereas 
they are considered to be the same expression in another context. 
This means that  it  might be required to add the originator to the 
uniqueness constraint. Similarly, when a requirement is stated to be 
valid in multiple validity contexts,  then this  means that  there are 
multiple requirements, each with its own ‘idea UID’. This implies 
that  the  ‘validity  context  UID’  should  be  added  to  the  second 
uniqueness constraints. 

13.5 Naming relations for objects in expressions of 
ideas

In principle, every UID that is used in an expression of a main idea, 
or  in  an  expression  of  a  contextual  fact,  is  denoted  in  a  human 
readable expression by a term (name, etc.), or by more than one term 
in  case  of  synonyms.  The  terminology  is  recorded  in  naming 
relations between UIDs and terms, as described in paragraph 5.1 and 
13.4.1.

In Formal English Databases all the naming relations of UIDs can be 
recorded in a separate Naming table. However, it  is also possible 
that they are included in an integrated Expression table (see par. 15). 
In an integrated Expression table the UIDs as well as the terms are 
included in the table itself. 

Table  60 specifies  all  the  names  that  imply  naming  relations 
(expressions  of  additional  contextual  facts)  that  are  required  to 
allocate names (terms) to the UIDs that are used to express main 
ideas and contextual facts.’ Note that ‘name’ stands for a character 
string that can be a term, a code, a phrase, a number, a URI, etc.
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Component ID
(column ID)

Description of object

101 The name of a left hand object.
201 The name of a right hand object.
3 The name of a kind of relation.
7 The name of a scale (UoM).
54 The name of a language.
16 The name of a language community.
73 The name of a left hand role.
75 The name of a right hand role.
43 The name of an intention.
31 The name of an extent.
33 The name of a probability.
35 The name of a location.
12 The name of an author of latest change.
77 The name of an accuracy of quantification.
20 The name of a pick list.
68 The name of a collection of ideas.
79 The name of an addressee of the expression.

Table 60, Naming columns in an Expression table
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14 Subsets of expression components & 
context

A formal English message or database may consist of the full set of 
expression  component  and  contextual  facts  as  defined  in  this 
document. It may also consist of a subset of them. 

The  definition  of  these  subsets  implicitly  also  define  subset 
Expression tables. 

Depending on the application,  users may decide to use a flexible 
subset or one of the predefined standard subsets of the collection of 
contextual facts.

The  following  subsets  of  expressions  are  defined,  each  with  its 
equivalent subset Expression table:

 Subset Minimum subset

 Subset Flexible subset

 Subset Nomenclature

 Subset Dictionary

 Subset Taxonomy

 Subset Product Model

 Subset Business Model (recommended)

 Query tables

These standard subsets are defined in the following paragraphs.

The subsets require the presence of all elements that are specified for 
the chosen subset and the elements shall be arranged in the indicated 
sequence, with as only exception the Flexible subset.

The default subset is the Business Model.
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14.1 Subset: Minimum subset
A Minimum subset is intended to express messages in nearly natural 
language, while still using a Gellish formalized language dictionary 
and the standard Gellish formalized language kinds of relations.

A Minimum subset has limited expression capabilities and therefore 
only suitable for usage in simple applications in small communities. 
For  example,  the  subset  does  not  provide  a  mechanism  for  the 
explicit  distinction  between  homonyms  nor  for  the  explicit 
distinction  between  languages.  It  is  neither  suitable  to  express 
intentions such as questions, denials, but is only intended to express 
statements.  It  does  not  provide  for  contextual  facts,  such  as  an 
approval status, source and timing information about the expressed 
ideas.

Users of Minimum subsets should ensure that the terms (names) of 
objects in the messages are unique or that the distinction between 
homonyms is apparent from the context in which the terms are used 
and that synonyms are explicitly declared to be synonyms.

A Minimum subset consists of only the core of an expression of a 
main idea, expressed in formalized natural language terms. Such a 
minimum  subset  consists  of  the  following  three  expression 
components: 

Component 
ID

(column ID)

Description

3 A name of a kind of relation (= formalized language 
phrase)

101 A name of a left hand object
201 A name of a right hand object

Table 61, Minimum subset

Minimum subsets may be expressed (implemented) in various ways 
(syntactic  structures  or  formats).  For  example  in  the  form  of 
functions, such as:

o Relation type (left hand object, right hand object)
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Another implementation may be in the form of a Minimum subset 
Expression table, which contains only the three columns: 101, 3 and 
201. An example of such an Expression table is:
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101 3 201
Name of left hand 

object
Name of kind 

of relation
Name of right 
hand object

the Eiffel tower is located in Paris

Table 62, Minimum subset Expression table

Minimum subset expressions are triples of expression components 
that are directly compliant with the Notation 3 RDF (N3) form of the 
RDF standard of the World Wide Web Consortium (W3C). 

Note: A more elaborate Expression table with additional columns 
can  also  be  represented  as  collections  of  triples  and can  also  be 
expressed in  RDF or  Notation 3 RDF as  is  described in  the last 
chapter.

Minimum subset+ is a in extension of Minimum subset with the idea 
UID, which enables the management of ideas.

14.2 Subset: Flexible subset
A Flexible subset is a subset that contains at least the non-optional 
expression components. The non-optional components are: 2, 101, 1, 
60, 3, 15, 201, 8, 9 and 10 as described in Table 63.

Component 
ID

(column ID)

Description

2 UID of left hand object
101 Name of left hand object
1 UID of main idea
60 UID of kind of relation
3 Name of kind of relation
15 UID of right hand object
201 Name of right hand object
8 Approval status
9 Date-Time of start of validity
10 Date-time of latest change
etc Free choice of additional columns (in any sequence)

Table 63, Minimum expression components for flexible subset
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Note:  Expressions  that  consists  of  more  than  three  expression 
components  can  be  represented  as  collections  of  triples.  For 
example,  when  they  are  expressed  in  RDF  or  Notation  3  RDF 
extended with an indicator for the collections (such as in TRIX). 
Such a format is described in ISO 15926-11.

The selection of additional optional columns as well as the sequence 
of  the  columns  is  free.  The  sequence  of  the  columns  in  an 
Expression  table  is  semantically  irrelevant,  because  the  columns 
shall  be  uniquely  identified  by  their  column  identifiers  and  the 
relations  between  the  columns  are  defined  independent  of  their 
position in the table.

A  Flexible  subset  may  even  include  non-standard  additional 
columns,  which  columns  are  then  treated  as  comment  from  a 
formalized language perspective.

14.3 Subset: Nomenclature, Lexicon or Vocabulary
A  Nomenclature subset, Lexicon  subset or  Vocabulary subset 
(Nomenclature  for  short)  is  intended  to  specify  terminology.  A 
specification  of  terminology  implies  names,  synonyms,  codes, 
abbreviations,  translations,  etc.  that  are used to denote something 
that is represented by a UID. 

A  Nomenclature  subset  represents  a  list  of  particular  terms  as 
‘names’  of  things  and  their  unique  identifier,  together  with  the 
language  in  which  the  names  are  expressed  and  the  language 
community in which the term for the thing originates. 

A Nomenclature list typically includes names of concepts, but may 
also include names of individual things such as countries and other 
standard geographical objects. Organizations or projects will often 
maintain  the  nomenclature  of  individual  things  or  collections  of 
individual things. For example as represented in equipment lists, line 
lists, inventories, etc.

A  Nomenclature  subset  includes  contextual  facts  as  well.  For 
example the approval status and date-time values, sources, etc.  A 
Nomenclature  subset  consists  of  the  following  expression 
components in the indicated sequence:
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0, 69, 54, 71, 16, 2, 101, 1, 8, 67, 9, 10, 12 and 13. These expression 
components are given in Table 64.

Component ID
(column ID)

Description

0 Presentation key
69 UID of natural language
54 Name of natural language
71 UID of language community
16 Name of language community
2 UID of left hand object

101 Name of left hand object
1 UID of main idea
8 Approval status
67 UID of succeeding idea
9 Date-Time of start of validity
10 Date-time of latest change
12 Name of author of latest change
13 UID of creator of idea

Table 64, Expression components for a vocabulary

A collection of  such expression components  require  a  syntactical 
structure  to  define  the  relations  between  the  components.  For 
example, a tabular implementation implicitly defines as contextual 
fact a naming relation between the UID and a term (name of thing) 
in  the  vocabulary.  This  relation  is  of  the  type  ‘is  called’  (or  ‘is 
referenced as’). For example:

 130206 is called pump. 

Such  a  table  also  expresses  a  contextual  fact  that  defines  the 
language context in which the naming is done. This idea is of the 
type <is presented in> (English). 

The  Nomenclature  subset  also  allows  defining  the  language 
community (sub-culture)  where a  name originates  (component  71 
and 16). For example, the name ‘pump’ may be declared to originate 
in the ‘mechanical engineering’ domain.
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Misspellings and  a  pointer  to  the  correct  spelling  can  also  be 
recorded in the nomenclature table. Misspellings can be indicated by 
a status (column 8) ‘replaced’ as well as an ‘identifier of successor 
of main idea’ (column 67), which refers to the idea UID that defines 
the correct spelling.

Preferred  terms are  terms  which  use  is  preferred  in  a  particular 
language  community.  When  an  organization  wants  to  specify  its 
own list of preferred terms it might specify them within their own 
language  community,  even  specifying  terms  that  are  identical  to 
terms that are already specified for another language community. 

When a Nomenclature (or Lexicon or Vocabulary) is represented in 
tabular form it can be represented in a Nomenclature subset of an 
Expression table.  Table 65 is an example of the main columns in a 
Nomenclature table.

54 16 2 101 1 8 67

Language
Language 

community 
(discipline)

Gellish 
UID

Name 
of 

thing

UID 
of 

idea
Status

UID of 
successor 
of main 

idea

English mechanical 
engineering

130206 pump 201 accepted

Deutsch Maschinenbau 130206 Pumpe 202 proposed
Nederlands werktuigbouwkunde 130206 pompe 203 replaced 204
Nederlands werktuigbouwkunde 130206 pomp 204 accepted

Table 65, Nomenclature subset example

Table  65 illustrates  that  the  same  concept,  represented  in  the 
formalized  language  by  UID  130206  is  denoted  in  English  as 
‘pump’  and  in  other  languages  by  different  terms,  whereas  the 
spelling ‘pompe’ in Dutch is a misspelling that should be replaced 
by ‘pomp’.

14.4 Subset: Dictionary
A  Dictionary subset is  intended  to  provide  textual  definitions  of 
things, especially of concepts, as an addition to the Nomenclature 
and Taxonomy subsets.  This implies a relation between the thing 
and the text that defines the thing. 
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The following is an example of the core columns in a Dictionary 
subset of an Expression table.
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54 2 101 1 4 8

Language
UID of 
defined 
thing

Name 
of 

thing

UID 
of 

idea
Textual definition Status

English 130206 pump 205 is a rotating equipment 
item intended to 
increase pressure in a 
liquid.

accepted

Nederland
s

130206 pomp 206 is een apparaat met 
roterende delen dat 
bedoeld is om de druk in 
een vloeistof te 
verhogen.

accepted

Table 66, Dictionary subset core example.

A full Dictionary subset consists of a Vocabulary subset (Table 64) 
plus two additional components: the full definition and an option for 
adding remarks.

Component ID
(column ID)

Description

4 Full definition (natural language text)
14 Remarks

Thus a Dictionary subset comprises the following components in the 
indicated sequence:
0, 69, 54, 71, 16, 2, 101, 1, 4, 14, 8, 67, 9, 10, 12 and 13.

Note 1: It is possible to record definitions for the same concept in 
multiple languages.

Note 2: Definition models are definitions that are expressed as 
collections of relations between concepts. Those relations require at 
least a Product Model subset.

Note 3: Verbal (spoken) or pictorial definitions require a relation to 
a sound or picture (or combination of them). However the textual 
definition (column 4) is meant for a string in ASCII or Unicode 
only. Therefore, such other definitions require at least a ‘Product 
model’ subset, as described below.
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14.5 Subset: Taxonomy
A  Taxonomy subset is a specialization hierarchy of concepts, also 
called  a  subtyping  hierarchy  (sometimes  erroneously  called  a 
classification  hierarchy).  This  implies  that  there  are  subtype-
supertype relations between the concepts.  A subtype concept is  a 
specialization of a supertype concept. The inverse of that relation 
expresses the same idea in another way, namely that  a supertype 
concept is a generalization of a subtype concept. 

Table 67 illustrates the core columns in a Taxonomy table.

54 2 101 1 15 15 8

Language

UID of 
left 

hand 
object

Name 
of left 
hand 
object

UID 
of 

idea

UID of 
right 
hand 
object

Name of right 
hand object

Status

English 13020
6

pump 7 130227 rotating 
equipment item

accepted

Nederlands 13020
6

pomp 7 130227 apparaat met 
roterende delen

ignore 
duplicat
e

Table 67, Taxonomy subset example

A specialization relation implies that the subtype concept inherits all 
the aspects that are intrinsic to the supertype concept. 

Note that the left hand object name and the right hand object name, 
as well as the language, are strictly speaking superfluous, but they 
are added to support the readability of the expressions. If they are 
ignored it  becomes clear that the two lines in the above example 
define the same idea, which is the reason why the UIDs of the ideas 
are identical and the status of the latter one is set at ‘duplicate’.

A  Taxonomy  subset is  an  extension  of  a  Dictionary  subset  by 
including  expression  components  for  the  UIDs  and  names  of 
supertype concepts. 

Component ID
(column ID)

Description

15 UID of right hand object
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201 Name of right hand object

Thus  a  Taxonomy  subset  consists  of  the  following  expression 
components in the indicated sequence:
0, 69, 54, 71, 16, 2, 101, 1, 15, 201, 14, 8, 67, 9, 10, 12 and 13.

14.6 Subset: Product Model
A  Product  Model  subset is  intended  for  use  in  practice  of  data 
exchange  to  describe  individual  objects  (including  occurrences) 
during their lifecycle as well as knowledge about kinds of things.

A  Product  Model  subset  consists  of  the  following  expression 
components in the indicated sequence:
0, 69, 54, 71, 16, 44, 2, 101, 1, 60, 3, 45, 15, 201, 65, 4, 30, 31, 66, 
7, 14, 8, 67, 9, 10, 12, 13, 50 and 68.

The expression components are presented in Table 68.

Component ID
(column ID)

Description

0 Presentation key
69 UID of natural language
54 Name of natural language
71 UID of language community
16 Name of language community
44 Left hand object cardinalities
2 UID of left hand object

101 Name of left hand object
1 UID of main idea
60 UID of kind of relation
3 Name of kind of relation
45 Right hand object cardinalities
15 UID of right hand object
201 Name of right hand object
65 Partial definition
4 Full definition
30 UID of extent
31 Name of extent
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66 UID of unit of measure
7 Name (symbol) of unit of measure (UoM)
14 Remarks
8 Approval status
67 UID of succeeding idea
9 Date-Time of start of validity
10 Date-time of latest change
12 Name of author of latest change
13 UID of creator of idea
50 UID of collection of ideas
68 Name of collection of ideas

Table 68, Expression components of a Product Model subset

Definitions of the components and implied relations are given in the 
Gellish Syntax document.

14.7 Subset: Business Model
A  Business  Model  subset is  intended  for  use  in  practice  of  data 
exchange  to  describe  propositions.  This  includes  business 
communication about both designs (imaginary objects) as well  as 
real  world  objects  (observed  individual  objects)  during  their 
lifecycle  and about  enquiries,  answers,  orders,  confirmations,  etc. 
This subset is a superset (indicated in  bold) of the Product Model 
subset, so it can also be used for storage and exchange of knowledge 
about kinds of things.

A Business Model subset is a subset that consists of the following 
expression components in the indicated sequence:
0, 69, 54, 71, 16, 39, 44, 2, 101, 72, 73, 5, 43, 19, 18, 1, 42, 60, 3, 
74,  75, 45, 15, 201, 34, 35, 65, 4, 30, 31, 32, 33, 66, 7, 76, 77, 34, 
35, 70, 20, 14, 8, 24, 67, 9, 10, 6, 12, 78, 79, 13, 53, 50, 68.

The expression components in a Business Model are presented in 
Table 69.

Component ID
(column ID)

Description

0 Presentation key
69 UID of natural language
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54 Name of natural language
71 UID of language community
16 Name of language community
39 Reality
44 Left hand object cardinalities
2 UID of left hand object

101 Name of left hand object
72 UID of left hand kind of role
73 Name of left hand kind of role
4 Full definition
43 Name of intention
19 UID of validity context
18 Name of validity context
1 UID of main idea
42 Description of main idea
60 UID of kind of relation
3 Name of kind of relation
74 UID of right hand kind of role
75 Name of right hand kind of role
45 Right hand object cardinalities
15 UID of right hand object
201 Name of right hand object
34 UID of exponent
35 Name of exponent
65 Partial definition
4 Full definition
30 UID of extent
31 Name of extent
32 UID of probability
33 Name of probability
66 UID of unit of measure
7 Name (symbol) of unit of measure (UoM)
76 UID of accuracy of quantification
77 Name of accuracy of quantification
34 UID of validity location
35 Name of validity location
70 UID of pick list
20 Name of pick list
14 Remarks

290



8 Approval status
24 Reason
67 UID of succeeding idea
9 Date-Time of start of validity
10 Date-time of latest change
6 UID of author of latest change
12 Name of author of latest change
78 UID of addressee of expression
79 Name of addressee of expression
13 UID of creator of idea
53 UID of expression
50 UID of collection of ideas
68 Name of collection of ideas

Table 69, Expression components for a Business Model

The  above-indicated  sequences  of  expression  components  are 
defined as a handy sequence for human interpretation of a tabular 
content. There is no semantic meaning in that sequence, because the 
semantics  of  the  relations  between  the  components  are  defined 
explicitly.

14.8 Query subsets
A Query subset consists of one of the other subsets, extended with 
expression components for the specification of string commonality 
criteria. 

In a tabular form a Query subset is a subset that is extended with the 
expression components 80 and 81.

Component ID
(column ID)

Description

80 Left hand string commonality
81 Right hand string commonality
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15 Implementation in the Gellish Syntax

All semantic expressions, of any ‘arity’, can be expressed in various 
syntaxes. For example in RDF triples, although such triples should 
be extended with a method to recognize collections of triples, which 
are usually called ‘graphs’, to represent the idea’s, terms as well as 
contextual facts. This can be done for example by using TRIX as is 
specified in  ISO 15926-11.  A more  direct  powerful  and efficient 
implementation uses the Gellish Syntax, which defines the tabular 
Gellish Expression format. Such a table can be used to describe any 
ideas  as  well  as  queries  about  individual  things  or  occurrences, 
requirements for things or knowledge about things in general. The 
various  standard  kinds  of  relations  that  are  used  to  classify  the 
relations and the indication of the intentions and the contextual facts 
determine the categories of the expressions. 

Typically  a  statement  or  question  about  an  individual  thing  is 
modeled by a relation that is classified by a kind of relation that is  
denoted by a phrase that starts with “is” or “has”. A requirement 
phrase  starts  with  “shall”  and must  specify  a  validity  context.  A 
statement that expresses knowledge about possibilities typically uses 
a kind of relation that is denoted by a phrase that starts with “can 
have” or “can be”. This is illustrated in the following table, which is 
a subset of Gellish expression table.

101 18 1 3 45 201

Left hand 
object name

Validity 
context for 
main idea

UID 
of 

idea
Relation type name

Cardina
lities

Right hand 
object name

I-1 201 is a part of P-1

impeller
handover to 
operations

202 shall have as aspect a diameter

centrifugal 
pump

203 can have as part a 1,n
pump 

impeller

impeller 204
has by definition 

as part a
2,n vane

Table 70, Example of Product data, a Requirement and 
Knowledge in one Expression table
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The example in  Table 70 illustrates four kinds of statements. The 
first  one states  that  a  particular  impeller  is  a  part  of  a  particular 
pump. The second one states that information about any (model of 
an)  impeller  that  is  handed  over  to  operations  shall  include  a 
diameter. The third statement describes the general knowledge that 
any centrifugal pump can have (and at least has) one impeller. The 
minimum  and  maximum  number  of  simultaneous  instances 
(individual  impellers  for  individual  pumps)  is  indicated  by  the 
cardinalities.  The  last  expression  states  that  an  impeller  has  by 
definition 2 or more vanes. Table 70 demonstrates that all such kinds 
of statements can be expressed in the same table or in tables that 
have the same columns and have a single common definition. 

A full specification of the Gellish Syntax is presented in the separate 
document ‘Gellish Syntax and Contextual Facts (Ref. 4).
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